首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 × 1010 rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the world's most important cereal crops.  相似文献   

2.
Reddy  P.M.  Ladha  J.K.  So  R.B.  Hernandez  R.J.  Ramos  M.C.  Angeles  O.R.  Dazzo  F.B.  de Bruijn  Frans J. 《Plant and Soil》1997,194(1-2):81-98
Legume-rhizobial interactions culminate in the formation of structures known as nodules. In this specialized niche, rhizobia are insulated from microbial competition and fix nitrogen which becomes directly available to the legume plant. It has been a long-standing goal in the field of biological nitrogen fixation to extend the nitrogen-fixing symbiosis to non-nodulated cereal plants, such as rice. To achieve this goal, extensive knowledge of the legume-rhizobia symbioses should help in formulating strategies for developing potential rice-rhizobia symbioses or endophytic interactions. As a first step to assess opportunities for developing a rice-rhizobia symbiosis, we evaluated certain aspects of rice-rhizobia associations to determine the extent of predisposition of rice roots for forming an intimate association with rhizobia. Our studies indicate that: a. Rice root exudates do not activate the expression of nodulation genes such as nodY of Bradyrhizobium japonicum USDA110, nodA of R. leguminosarum bv. trifolii, or nodSU of Rhizobium. sp. NGR234; b. Neither viable wild-type rhizobia, nor purified chitolipooligosaccharide (CLOS) Nod factors elicit root hair deformation or true nodule formation in rice; c. Rhizobia-produced indole-3-acetic acid, but neither trans-zeatin nor CLOS Nod factors, seem to promote the formation of thick, short lateral roots in rice; d. Rhizobia develop neither the symbiont-specific pattern of root hair attachment nor extensive cellulose microfibril production on the rice root epidermis; e. A primary mode of rhizobial invasion of rice roots is through cracks in the epidermis and fissures created during emergence of lateral roots; f. This infection process is nod-gene independent, nonspecific, and does not involve the formation of infection threads; g. Endophytic colonization observed so far is restricted to intercellular spaces or within host cells undergoing lysis. h. The cortical sclerenchymatous layer containing tightly packed, thick walled fibers appears to be a significant barrier that restricts rhizobial invasion into deeper layers of the root cortex. Therefore, we conclude that the molecular and cell biology of the Rhizobium-rice association differs in many respects from the biology underlying the development of root nodules in the Rhizobium-legume symbiosis.  相似文献   

3.
Most rhizobial strains inhibit rice root growth in the presence of calcium or potassium nitrates, but not ammonium nitrate. Certain rhizobial strains, however, such as strain R4, do not inhibit rice growth and can enter rice roots and multiply in the intercellular spaces. By using the green fluorescent protein (GFP) as a visual marker, it was found that Rhizobium became intimately associated with rice seedling roots within 24-48 h. During this initial period it was observed that strain R4 could cause structural changes resembling infection threads within the rice root hairs. Generally, the sites of the emerging lateral roots provide a temporary entry point for rhizobia, either by root hair entry or crack entry. All tested GFP-labelled Rhizobium strains infected the root hairs near the base of growing lateral roots. This study suggests that some strains may have the ability to infect rice root tissues via root hairs located at the emerging lateral roots and to spread extensively throughout the rice root.  相似文献   

4.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

5.
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.  相似文献   

6.
* Root respiration, stomatal conductance, leaf transpiration and photosynthetic rates were measured in phytotron and field-grown plants following the application of 5 or 10 nM lumichrome, 10 nM ABA (abscisic acid) and 10 ml of 0.2 OD600 infective rhizobial cells. * Providing soybean and cowpea roots with their respective homologous rhizobia and/or purified lumichrome increased the concentration of this molecule in xylem sap and leaf extracts. Relative to control, rhizobial inoculation and lumichrome application significantly increased root respiration in maize, decreased it in lupin, but had no effect on the other test species. * Applying either lumichrome (10 nM), infective rhizobial cells or ABA to roots of plants for 44 h in growth chambers altered leaf stomatal conductance and transpiration in cowpea, lupin, soybean, Bambara groundnut and maize, but not in pea or sorghum. Where stomatal conductance was increased by lumichrome application or rhizobial inoculation, it resulted in increased leaf transpiration relative to control plants. Treating roots of field plants of cowpea with this metabolite up to 63 d after planting showed decreased stomatal conductance, which affected CO2 intake and reduction by Rubisco. * The effect of rhizobial inoculation closely mirrored that of lumichrome application to roots, indicating that rhizobial effects on these physiological activities were most likely due to lumichrome released into the rhizosphere.  相似文献   

7.
Interactions of rhizobia with rice and wheat   总被引:1,自引:0,他引:1  
Webster  G.  Gough  C.  Vasse  J.  Batchelor  C.A.  O'Callaghan  K.J.  Kothari  S.L.  Davey  M.R.  Dénarié  J.  Cocking  E.C. 《Plant and Soil》1997,194(1-2):115-122
Recently, evidence has been obtained that naturally occurring rhizobia, isolated from the nodules of non-legume Parasponia species and from some tropical legumes, are able to enter the roots of rice, wheat and maize at emerging lateral roots by crack entry. We have now investigated whether Azorhizobium caulinodans strain ORS571, which induces root and stem nodules on the tropical legume Sesbania rostrata as a result of crack entry invasion of emerging lateral roots, might also enter rice and wheat by a similar route. Following inoculation with ORS571 carrying a lacZ reporter gene, azorhizobia were observed microscopically within the cracks associated with emerging lateral roots of rice and wheat. A high proportion of inoculated rice and wheat plants had colonized lateral root cracks. The flavanone naringenin at 10 and 10 M stimulated significantly the colonization of lateral root cracks and also intercellular colonization of wheat roots. Naringenin does not appear to be acting as a carbon source and may act as a signal molecule for intercellular colonization of rice and wheat by ORS571 by a mechanism which is nod gene-independent, unlike nodule formation in Sesbania rostrata. The opportunity now arises to compare and to contrast the ability of Azorhizobium caulinodans with that of other rhizobia, such as Parasponia rhizobia, to intercellularly colonize the roots of non-legume crops.  相似文献   

8.
Yanni  Youssef G.  Rizk  R.Y.  Corich  V.  Squartini  A.  Ninke  K.  Philip-Hollingsworth  S.  Orgambide  G.  de Bruijn  F.  Stoltzfus  J.  Buckley  D.  Schmidt  T.M.  Mateos  P.F.  Ladha  J.K.  Dazzo  Frank B. 《Plant and Soil》1997,194(1-2):99-114
For over 7 centuries, production of rice (Oryza sativa L.) in Egypt has benefited from rotation with Egyptian berseem clover (Trifolium alexandrinum). The nitrogen supplied by this rotation replaces 25- 33% of the recommended rate of fertilizer-N application for rice production. This benefit to the rice cannot be explained solely by an increased availability of fixed N through mineralization of N- rich clover crop residues. Since rice normally supports a diverse microbial community of internal root colonists, we have examined the possibility that the clover symbiont, Rhizobium leguminosarum bv. trifolii colonizes rice roots endophytically in fields where these crops are rotated, and if so, whether this novel plant-microbe association benefits rice growth. MPN plant infection studies were performed on macerates of surface-sterilized rice roots inoculated on T. alexandrinum as the legume trap host. The results indicated that the root interior of rice grown in fields rotated with clover in the Nile Delta contained 106 clover-nodulating rhizobial endophytes g fresh weight of root. Plant tests plus microscopical, cultural, biochemical, and molecular structure studies indicated that the numerically dominant isolates of clover-nodulating rice endophytes represent 3 – 4 authentic strains of R. leguminosarum bv. trifolii that were Nod Fix on berseem clover. Pure cultures of selected strains were able to colonize the interior of rice roots grown under gnotobiotic conditions. These rice endophytes were reisolated from surface-sterilized roots and shown by molecular methods to be the same as the original inoculant strains, thus verifying Koch's postulates. Two endophytic strains of R. leguminosarum bv. trifolii significantly increased shoot and root growth of rice in growth chamber experiments, and grain yield plus agronomic fertilizer N-use efficiency of Giza-175 hybrid rice in a field inoculation experiment conducted in the Nile Delta. Thus, fields where rice has been grown in rotation with clover since antiquity contain Fix strains of R. leguminosarum bv. trifolii that naturally colonize the rice root interior, and these true rhizobial endophytes have the potential to promote rice growth and productivity under laboratory and field conditions.  相似文献   

9.
水稻内生放线菌类群及其对宿主病原菌的抗性研究   总被引:10,自引:0,他引:10  
采用常规方法对广东省番禺和五山两地种植的水稻内生放线菌进行分离、鉴定和分析 ,结果表明水稻内生放线菌多属于链霉菌属 (Streptomyces) ,其中灰褐类群链霉菌 (S .griseofuscus)的分离频率最高为 36 1%~ 6 9% ,是水稻植株中的优势内生放线菌类群。研究了内生放线菌在水稻植株各器官中的分布 ,结果表明根中内生放线菌的多样性高于茎叶。番禺地区种植的水稻中分离出的内生放线菌种类较多。从感病品种及生长不良水稻植株中分离出的内生放线菌种类比较丰富。通过回接分离试验及利用扫描电镜观察内生菌在植物体内分布发现 ,水稻优势内生放线菌回接无菌组培苗后 ,不仅能够定殖在水稻植株的根表和根内部 ,而且存在于茎杆和叶片中。通过平板颉抗及代谢物的活性测定试验 ,发现所分离的内生放线菌 5 0 %对水稻某些病原菌有颉抗活性 ,其中灰褐类群链霉菌的比例达到 5 5 4 % ,成为所分离的水稻内生放线菌类群中具有颉抗活性的最大群体。  相似文献   

10.
Rhizobial endophytes infect and colonize not only leguminous plants, but several non‐leguminous species as well. Using green fluorescent protein tagging technique, it has been shown that Rhizobia infect different varieties of rice species and migrate from plant roots to aerial tissues such as leaf sheaths and leaves. The interaction between them was found to promote the growth of rice. The growth promotion is the cumulative result of enhanced photosynthesis and stress resistance. In addition, indole‐3‐acetic acid also contributes to the promotion. Gel‐based comparative proteomic approaches were applied to analyze the protein profiles of three different tissues (root, leaf sheath and leaf) of Sinorhizobium meliloti 1021 inoculated rice in order to get an understanding about the molecular mechanism. Upon the inoculation of rhizobia, proteins involved in nine different functional categories were either up‐regulated or down‐regulated. Photosynthesis related proteins were up‐regulated only in leaf sheath and leaf, while the up‐regulated proteins in root were exclusively defense related. The results implied that there might have been an increase in the import and transport of proteins involved in light and dark reactions to the chloroplast as well as more efficient distribution of nutrients, hence enhanced photosynthesis. Although the initiation of defensive reactions mainly occurred in roots, some different defense mechanisms were also evoked in the aerial tissues.  相似文献   

11.
12.
A plant growth-promoting bacteria, Azospirillum sp. B510, isolated from rice, can enhance growth and yield and induce disease resistance against various types of diseases in rice. Because little is known about the interaction between other plant species and this strain, we have investigated the effect of its colonization on disease resistance in tomato plants. Treatment with this strain by soil-drenching method established endophytic colonization in root tissues in tomato plant. The endophytic colonization with this strain-induced disease resistance in tomato plant against bacterial leaf spot caused by Pseudomonas syringae pv. tomato and gray mold caused by Botrytis cinerea. In Azospirillum-treated plants, neither the accumulation of SA nor the expression of defense-related genes was observed. These indicate that endophytic colonization with Azospirillum sp. B510 is able to activate the innate immune system also in tomato, which does not seem to be systemic acquired resistance.  相似文献   

13.
Colonization ability of the two endophytic bacteria, isolated from surface sterilized seeds of Jaisurya variety of deep-water rice viz., Pantoea sp. and Ochrobactrum sp., was compared after genetically tagging them with a constitutively expressing green fluorescent protein gene (gfp). Confocal laser scanning microscopy (CLSM) of hydroponically grown seedlings of Jaisurya rice, inoculated with gfp-tagged endophytes, revealed that both Pantoea sp. and Ochrobactrum sp. colonized the intercellular spaces in the root cortex when inoculated separately. Colonization by gfp-tagged Ochrobactrum sp. was severely inhibited when co-inoculated with an equal number (10(5) c.f.u. ml(-1)) of wild type Pantoea sp., but the converse was not true. Pantoea sp. was a more aggressive endophytic colonizer of its host than Ochrobactrum sp. The potential of using GFP reporter and CLSM as tools in evaluating competitive ability of colonization among endophytes is herewith demonstrated.  相似文献   

14.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

15.
稻镰状瓶霉Falciphora oryzae是本实验室从野生稻根系分离获得的一株DSE,具有促生、防病等作用。本研究旨在对其促生机制进行初探。在室内平板共培养条件下,对水稻种子接种稻镰状瓶霉菌饼(4个/皿),测定植株生长指标、营养元素含量及营养吸收相关基因表达量;温室盆栽条件下,将稻镰状瓶霉以菌肥形式(60g/桶)与水稻进行盆栽共培养,测定植株农艺性状指标。结果表明,接种稻镰状瓶霉后,平板上的水稻幼苗的株高、叶宽和茎秆直径显著增加,根长并未受影响。稻镰状瓶霉能够促进水稻根系对营养元素的吸收,提高地上部分和根系组织中N、P、K、S、Fe和Mg元素的含量,诱导根部与营养元素吸收相关的调控基因OsPTR9OsAMT3;2OsPT4OsSULTR3;1OsMRS2-8OsHAK16OsYSL15OsIRO2的显著上调表达。盆栽试验表明,稻镰状瓶霉显著提高了水稻各农艺性状指标,包括叶宽、茎秆直径、植株鲜重、植株干重、叶绿素含量和光合强度。结果表明,稻镰状瓶霉的根部定殖能够诱导营养元素吸收相关基因的上调表达,从而促进根系对营养元素的吸收,进而促进水稻植株的生长。  相似文献   

16.
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.  相似文献   

17.
18.
经过对水稻两品种(沈农319、中百4号)不同时期、不同组织内生细菌动态变化研究结果表明,根组织带菌量最高,其次是叶,茎最低。发育阶段以孕穗期带菌量显着增高,随着组织衰老而降低。对分离到的4个主要种群显着性检验结果表明,巨大芽孢杆菌为两品种体内细菌优势种。通过对水稻这一世界性粮食作物体内细菌的种类,以及随生育期、组织间菌体数量变化的探讨研究,为水稻害虫的生物防治,提供遗传改良工程杀虫细菌的有效载体菌。  相似文献   

19.
水稻体内细菌的动态研究   总被引:18,自引:1,他引:17  
经过对水稻两品种( 沈农319 、中百4 号) 不同时期、不同组织内生细菌动态变化研究结果表明,根组织带菌量最高,其次是叶,茎最低.发育阶段以孕穗期带菌量显著增高,随着组织衰老而降低.对分离到的4 个主要种群显著性检验结果表明,巨大芽孢杆菌为两品种体内细菌优势种.通过对水稻这一世界性粮食作物体内细菌的种类,以及随生育期、组织间菌体数量变化的探讨研究,为水稻害虫的生物防治,提供遗传改良工程杀虫细菌的有效载体菌.  相似文献   

20.
Isolation of endophytic diazotrophic bacteria from wetland rice   总被引:16,自引:3,他引:13  
Barraquio  W.L.  Revilla  L.  Ladha  J.K. 《Plant and Soil》1997,194(1-2):15-24
Endophytic nitrogen-fixing bacteria are believed to contribute substantial amounts of N to certain gramineous crops. We have been interested to find (a) a diazotroph(s) in rice which can aggressively and stably persist and fix nitrogen in interior tissues and (b) unique rice-diazotrophic endophyte combinations. To achieve these objectives, it has been essential to find an efficient method to surface sterilize rice tissues. The method described here consists of exposing tissues to 1% Chloramine T for 15 min followed by shaking with glass beads. It has proven very efficient since (a) surface bacterial populations on the root and culm were found to be reduced by more than 90%, (b) the number of the internal colonizers was found to be significantly higher than the number of surface bacteria, and (c) colonization of root but not subepidermal tissue by gusA-marked Herbaspirillum seropedicae Z67 bacteria was found to be virtually eliminated. Nitrogen-fixing putative endophytic populations (MPN g dry wt) in the root (7.94 × 10) and culm (2.57 × 10) on field-grown IR72 plants grown in the absence of N fertilizer was found to be significantly higher near heading stage. The corresponding total putative endophyte populations in the tissues of 25 highly diverse genotypes of rice and their relatives was found to range from 10–10and 10–10, in the roots and culms, respectively. Generally, the resident bacteria were found to be non-diazotrophic, although in isolated cases diazotrophs were found, for example in the roots and culm of IR72 rice plants, or the culm of Zizaniopsis villanensis plants. The size of populations of diazotrophic bacteria in different rice genotypes was found to be 10–10 for the roots and 10–10 for the culms, respectively. The rice genera-related plants Potamophila pariffora and Rhynchoryza subulata showed the highest levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号