首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro rates of conversion of [1-14C]leucine to 4-methyl-2-oxo[1-14C]pentanoate and of oxidation of [1-14C] and [U-14C]leucine were measured for tissues from fed and starved (5 days) sheep. Slices of liver and kidney and preparations of adipose tissue and of fibre bundles of external intercostal muscle (EIC) were used. Skeletal muscle is likely the major site of leucine catabolism in sheep although adipose tissue is capable of substantial metabolism. Muscle and adipose tissue from fed sheep released 17 and 5% of the [1-14C]leucine transaminated as 4-methyl-2-oxo-[1-14C]pentanoate and upon starvation the proportions were increased (P less than 0.001) to 46 and 32%. Starvation reduced (P less than 0.01) leucine catabolism in all tissues except the kidney. The pattern of leucine catabolism in EIC muscle changed from extensive oxidation in the fed state to being limited essentially to transamination and decarboxylation in the starved state.  相似文献   

2.
1. The turnover rate of L-[1-14C]leucine was increased by 35% in lactating rats compared with virgin rats. Starvation or removal of pups (24 h) returned the value to that of the virgin rat. 2. Incorporation of L-[U-14C]leucine into lipid and protein of mammary glands of lactating rats in vivo increased 7-fold and 6-fold respectively compared with glands of virgin rats. Lactation caused no change in the incorporation of L-[U-14C]leucine into hepatic lipid and protein. 3. The production of 14CO2 from L[l-14C]leucine (in the presence of glucose) was similar in isolated acini from glands of fed (chow) and starved lactating rats. Feeding with a 'cafeteria' diet caused a slight decrease, and removal of pups a large decrease, in the oxidative decarboxylation of leucine. 4. Oxidation of L-[2-14C]leucine to 14CO2 was increased about 3-fold in acini from starved lactating rats or lactating rats fed on a 'cafeteria' diet compared with rats fed on a chow diet. Insulin decreased the formation of 14CO2 in all three situations. 5. Incorporation of L-[U-14C]- and [2-14C]-leucine into lipid was decreased in acini from starved lactating rats and lactating rats fed on a 'cafeteria' diet. Insulin tended to increase the conversion of [2-14C]leucine into lipid, but this was significant only in the case of the acini from 'cafeteria'-fed rats. 6. Experiments with (-)-hydroxycitrate indicate that the major route for conversion of leucine carbon into lipid in acini is via citrate translocation from the mitochondria. 7. The physiological implications of these findings are discussed.  相似文献   

3.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

4.
[2-14C] leucine, [1-14C] alanine, [1-14C] glucose, [1-14C] lactate and [1-14C] pyruvate utilization in the protein synthesis has been studied in vivo at early stages of postnatal development of piglets. It has been established, that during the first 24 hours after birth the protein synthesis intensity, judging by [2-14C] leucine incorporation, in liver, skeletal muscle, duodenal wall and subcutaneous tissue of piglets increases 5, 7, 6.5 and 2.1 times respectively. At the age of 1-2 h the radioactive carbon incorporation from [1-14C] glucose into the brain proteins is more pronounced than into the proteins of liver and skeletal muscle. During the first days of life the intensity of the label incorporation from [1-14C] glucose into liver and skeletal muscle proteins of piglets is enhanced, whereas in brain it remains at the same level. The degree of 14C carbon incorporation from [1-14C]-alanine, [1-14C] pyruvate and [1-14C] lactate into the liver and skeletal muscle proteins of 5-days-old piglets is approximately the same, 14C substrates of protein synthesis in brain and subcutaneous adipose tissue having some peculiarities.  相似文献   

5.
The amino acid leucine is efficiently used by the trypanosomatid Leishmania mexicana for sterol biosynthesis. The incubation of [2-(13)C]leucine with L. mexicana promastigotes in the presence of ketoconazole gave 14alpha-methylergosta-8,24(24(1))-3beta-ol as the major sterol, which was shown by mass spectrometry to contain up to six atoms of (13)C per molecule. (13)C NMR analysis of the 14alpha-methylergosta-8,24(24(1))-3beta-ol revealed that it was labeled in only six positions: C-2, C-6, C-11, C-12, C-16, and C-23. This established that the leucine skeleton is incorporated intact into the isoprenoid pathway leading to sterol; it is not converted first to acetyl-CoA, as in animals and plants, with utilization of the acetyl-CoA to regenerate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). An inhibitor of HMG-CoA synthase (L-659,699) blocked the incorporation of [1-(14)C]acetate into sterol but had no inhibitory effect on [U-(14)C]leucine incorporation. The HMG-CoA reductase inhibitor lovastatin inhibited promastigote growth and [U-(14)C]leucine incorporation into sterol. The addition of unlabeled mevalonic acid (MVA) overcame the lovastatin inhibition of growth and also diluted the incorporation of [1-(14)C]leucine into sterol. These results are compatible with two routes by which the leucine skeleton may enter intact into the isoprenoid pathway. The catabolism of leucine could generate HMG-CoA that is then directly reduced to MVA for incorporation into sterol. Alternatively, a compound produced as an intermediate in leucine breakdown to HMG-CoA (e.g. dimethylcrotonyl-CoA) could be directly reduced to produce an isoprene alcohol followed by phosphorylation to enter the isoprenoid pathway post-MVA.  相似文献   

6.
The intensity of [1-14C]glucose, [6-14C]glucose, [1-14C]palmitate and [1-14C]leucine oxidation and the effect of insulin and hydrocortisone on this process were studied in the brain, duodenum mucosa, liver and skeletal muscle of 1- and 5-day old piglets in vitro. Most of the studied substrates are oxidized in the tissues of 5-day piglets more intensively. Insulin stimulates oxidation of [1-14C]glucose, [6-14C]glucose and [1-14C]leucine in the brain and duodenum mucosa in 1- and 5-day old piglets, while in the liver and skeletal muscle--only in 5-day old piglets. Hydrocortisone administration enhances oxidation of [1-14C]leucine in most of the studied tissues in 1-day piglets and oxidation of [1-14C]glucose and [6-14C]glucose--in 5-day piglets. Both hormones produce no essential influence on the intensity of [1-14C]palmitate oxidation in the studied tissues of piglets or somewhat weaken it.  相似文献   

7.
Leucine was oxidized by rat adipose tissue at a rate which was not limited by the activity of branched chain amino acid transaminase since high concentrations (10 mM) of [1-14C]leucine and its transamination product, alpha-keto[1-14C]isocaproate, were oxidized at similar rates. Despite the apparent abundance of transaminase activity, however, [1-14C]valine was oxidized at only 10 to 25% of the rate of its transamination product, alpha-keto[1-14C]isovalerate. The net rate at which [1-14C] valine was transaminated by intact tissues was estimated as the sum of the rates of 14CO2 production and alpha-ketoiso[1-14C]valerate release into the medium. Transamination did not limit the rate of valine oxidation since valine was transaminated 3 times as fast as it was oxidized. The rate of valine transamination increased 18-fold when its concentration was raised 100-fold, but the fraction of [1-14C]valine oxidized to 14CO2 remained constant over the range of incubation conditions studied. The oxidation/transamination ratio for leucine was also constant and exceeded the oxidation/transamination ratio for valine unless valine oxidation was stimulated, either by the addition of glucose or leucine. Stimulation of valine oxidation did not increase its transamination but reduced the rate at which alpha-ketoisovalerate was released from the tissue. The faster oxidation of alpha-ketoisocaproate than of alpha-ketoisovalerate may be due to the activation of branched chain alpha-keto acid dehydrogenase by alpha-ketoisocaproate, but the alpha-keto acid oxidation rates do not fully account for the faster transamination of leucine than of valine.  相似文献   

8.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

9.
Determination of 14CO2 content in expired air after the intravenous injection of energetic substrates marked by the radioactive carbon to the pigs showed that the oxidative intensity of these substrates decreases in the series: [6-14C]glucose greater than [1-14C] alanine greater than [1-14C]leucine greater than [1-14C]glucose. The oxidation intensity of all substrates under study except for [1-14C]palmitate in the organism of one-day satisfied pigs is considerably higher, than during the first two hours after their birth. The starvation of pigs during the first 24 hours increases the oxidation of both investigated amino acid and [1-14C]-palmitate in tissues of their organism with a decrease in the metabolic intensity of [6-14C] and [1-14C]glucose.  相似文献   

10.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

11.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

12.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

13.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

14.
The biosynthetic pathway of an unusual amino acyl [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl (AHP)] moiety which is contained in bestatin has been studied by testing the incorporation of potential precursors. L-[U-14C]-Phenylalanine, L-[U-14C]leucine, and [U-14C]acetic acid were efficiently incorporated into bestatin, but the radioactivity of L-[1-14C]phenylalanine, [1-14C]glyoxylic acid, and [14C]oxalic acid were not incorporated. Incorporation of acetic acid into 1- and 2-carbon of the AHP moiety was confirmed by incorporation of [13C]acetic acid. Thus, the AHP moiety was shown to be biosynthesized from L-phenylalanine and two carbon atoms of acetic acid, accompanied by decarboxylation of the phenylalanine.  相似文献   

15.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

16.
The metabolism of leucine by Leishmania donovani was investigated. Washed promastigotes were incubated with [1-14C]- or [U-14C]leucine or [1-14C]alpha-ketoisocaproate (KIC) and 14CO2 release was measured. The amount of KIC-derived acetyl-CoA oxidized in the citric acid cycle was computed. Promastigotes from mid-stationary phase cultures oxidized each of these labeled substrates less rapidly than cells from late log phase cultures, and significantly less acetyl-CoA derived from KIC oxidation was oxidized in the citric acid cycle. Glucose was a stronger inhibitor than was acetate of CO2 formation in the citric acid cycle in log phase promastigotes, but the reverse was observed in cells from mid-stationary phase. Alanine also inhibited leucine catabolism, but glutamate had little effect. Acute hypo-osmotic stress did not affect leucine catabolism, but hyper-osmotic stress caused appreciable inhibition of leucine oxidation. Cells grown under hypo- or hyper-osmotic conditions showed no changes in the effects of hypo- or hyper-osmotic stress on leucine catabolism, i.e. L. donovani is not an osmoconformer with respect to leucine metabolism. Leucine utilization in L. donovani was insensitive to a number of drugs that affect leucine metabolism in mammalian cells, indicating that the leucine pathway in L. donovani is not regulated in the same manner as in mammalian cells.  相似文献   

17.
Branched-chain amino acid metabolism in hemidiaphragms from 40 h-starved rats is influenced by the provision of glucose as co-substrate. Glucose inhibits 14CO2 production from [l-14C]valine and [U-14C]valine but stimulates 14CO2 production from [l-14C]leucine, [U-14C]leucine and [U-14C]isoleucine. In the presence of glucose, ketone bodies inhibit alanine release and 14CO2 production from [l-14C]valine, [l-14C]leucine and [U-14C]isoleucine, but inhibition is not observed in the absence of glucose as cosubstrate. Glucose-dependent inhibition by ketone bodies of branched-chain amino acid oxidation via inhibition of the branched-chain 2-oxo acid dehydrogenase complex or branched-chain amino acid aminotransferase may account in part for the reported hypoalanaemic action of ketone bodies in vivo.  相似文献   

18.
Since skeletal muscle is the major site in the body for oxidation of leucine, isoleucine and valine, the pathway and control of leucine oxidation were investigated in cell-free preparations of rat muscle. Leucine was found to be transaminated to 4-methyl-2-oxopentanoate, which was then oxidatively decarboxylated. On differential centrifugation 70--80% of the transaminase activity was recovered in the soluble fraction of the cell, and the remaining amount in the mitochondrial fraction. The transaminase, from both fractions had similar pH optima and both were markedly inhibited by Ca2+. Thus changes in cellular Ca2+ concentration may regulate transaminase activity. Both transaminases had a much higher affinity for 2-oxoglutarate than for pyruvate. Therefore the utilization of amino groups from leucine for the biosynthesis of alanine in muscle [Odessey, Khairallah & Goldberg (1974) J. Biol. Chem. 249, 7623--7629] in vivo involves transamination with 2-oxoglutarate to produce glutamate, which is then transaminated with pyruvate to produce alanine. The dehydrogenase activity assayed by the decarboxylation of methyl-2-oxo[1-14C]pentanoate was localized exclusively in the fraction containing mitochondria and required NAD+, CoA and thiamin pyrophosphate for optimal activity. Measurements of competitive inhibition suggested that the oxo acids of leucine, isoleucine and valine are all decarboxylated by the same enzyme. The enzyme activity was decreased by 90% upon freezing or sonication and was stimulated severalfold by Mg2+, K+ and phosphate ions. In addition, it was markedly inhibited by ATP, but not by non-metabolizable analogues. This observation suggests that splitting of ATP is required for inhibition. The oxidative decarboxylation of 4-methyl-2-oxopentanoate by the dehydrogenase appears to be the rate-limiting step for leucine oxidation in muscle homogenates and also in intact tissues. In fact, rat muscles incubated with [1-14C]leucine release 1-14C-labelled oxo acid into the medium at rates comparable with the rate of decarboxylation. Intact muscles also released the oxo acids of [1-14C]valine or [1-14C]isoleucine, but not of other amino acids. These findings suggest that muscle is the primary source of the branched-chain oxo acids found in the blood.  相似文献   

19.
The activity of branched chain alpha-keto acid dehydrogenase in extracts of adipose tissue was elevated after homogenization of tissue segments which had been incubated in buffer containing 0.3 mM leucine. A maximum increase (4-fold) was observed in extracts of tissues incubated in buffer containing 2.5 mM leucine, alpha-Ketoisocaproate and leucine caused maximum increases which were of similar magnitude and which required the same length of incubation of the tissue segments (5 to 15 min). The effect of leucine on branched chain alpha-keto acid dehydrogenase activity was observed both in the presence and absence of insulin, which also increased the activity of the enzyme in tissue extracts. Intact adipose tissue segments oxidized [I-14C]leucine at a maximum rate approximately 4 times that of [1-(14)C]valine. The rate of valine oxidation by intact tissue segments was doubled by addition of 0.2 to 0.5 mM unlabeled leucine, but not isoleucine, to medium containing 2 mM [1-(14)C]valine. Leucine, but not valine, also stimulated the rate of oxidation of 2 mM [U-14C]isoleucine by intact tissue segments. These results suggest that branched chain alpha-keto acid dehydrogenase activity, which is thought to limit the rate of branched chain amino acid oxidation in adipose tissue, may be sensitive to changes in the concentration of leucine in rat blood.  相似文献   

20.
We studied the effect of various energetic nutrients on metabolism of l-[U-14C]leucine and [1–14C]glycine in cerebral cortex of rats at different ages. At gestational age, glucose and lactate stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine and from l-[U-14C]leucine, respectively; glucose, -OH-butyrate and lactate stimulated lipid synthesis from l-[U-14C]leucine. At 10 days of age, glucose, mannose, and fructose stimulated protein synthesis, and glucose and mannose stimulated oxidation to CO2 as well as lipid synthesis from l-[U-14C]leucine. In adult rats, glucose, mannose, and fructose stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine; glutamine also markedly decreased the oxidation of l-[U-14C]leucine and [1–14C]glycine in 10–day-old and adult rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号