首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated adrenal cortex cells respond to the addition of ACTH1–39 or analogs with increased production of cyclic AMP and corticosterone. It is estimated that cyclic AMP production need proceed at less than 20% of maximum to induce maximum corticosterone production. ACTH1–24, [Lys17, Lys18]ACTH1–8 amide, and ACTH1–16 amide induce a maximum rate of cyclic AMP and of corticosterone production equal to those of ACTH1–39. The relative potencies as determined by cyclic AMP and by corticosterone production are in excellent agreement. The analog, ACTH5–24, induces maximum cyclic AMP production equal to 45% of that of the natural hormone, but as predicted, induces maximum corticosterone production equal to that of ACTH1–39. The derivative, [Trp(Nps)9]ACTH1–39 induces 77% of maximum corticosterone production and less than 1% of maximum cyclic AMP production. The fragment ACTH11–24 is a competitive antagonist of ACTH1–39 for both cyclic AMP and corticosterone production. The observations on agonists, a partial agonist and a competitive antagonist are in harmony with the “second messenger” role assigned to cyclic AMP. A provisional model, based on the fit of the experimental observations to a set of equations, provides expressions of “intrinsic activity,” “receptor reserve”, “sensitivity”, and “amplification” in terms of maximum cyclic AMP production, concentration of ACTH which induces 12 maximum cyclic AMP production and concentration of cyclic AMP which induces 12 maximum corticosterone production.  相似文献   

2.
Isolation of ACTH1-39,ACTH1-38 and CLIP from the calf anterior pituitary   总被引:2,自引:0,他引:2  
Calf anterior pituitaries were defatted and homogenized and peptides were adsorbed from the homogenate supernatant onto octadecylsilyl-silica. After elution, the resulting extract was subjected to gradient elution reversed-phase high pressure liquid chromatography (RP-HPLC) using aqueous acetonitrile containing 0.1% (vv) trifluoroacetic acid (TFA). Radioimmunoassay of column fractions for corticotropin (ACTH) revealed three major areas of immunoreactivity. Each was purified to homogeneity by gradient elution RP-HPLC employing aqueous acetonitrile containing either 0.13% heptafluorobutyric acid (vv) or 0.1% TFA (vv). Amino acid analysis and exopeptidase and trypsin digestions revealed the three forms of corticotropin to be ACTH1–38, corticotropin-like intermediary lobe peptide, (CLIP, ACTH18–39) and ACTH1–39. 3H-labeled ACTH1–39 did not give rise to either 3H-ACTH1–38 or 3H-CLIP during isolation.  相似文献   

3.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2·10?5 M ACTH1–24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1–24, ACTH1-16-NH2 and ACTH1–10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1–24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

4.
The effect of morphine sulfate (MS) on adenylate cyclase (AC) and phosphodiesterase (PDE) activities in the rat striatum was investigated. MS produced a dose-dependent increase in basal AC activity and did not alter sodium fluoride-induced stimulation both invivo (7.5–30 mg/kg, 1 hr pretreatment, i.p.) and invitro (1–100μM). invitro, when submaximal effective concentrations of dopamine and MS were combined, there was an additive effect. However, administration of MS invivo did not alter dopamine-induced stimulation of AC activity. MS, invitro and invivo inhibited PDE activity in a dose-dependent manner only with the high substrate concentration (3.3 × 10−3M cyclic AMP). Preliminary results from this study indicate that morphine affects the cyclic AMP system.  相似文献   

5.
Corticotropin releasing factor (CRF) was tested for its ability to stimulate ACTH and β-endorphin secretion from clonal AtT-20D16-16 mouse pituitary tumor cells. Release of both hormones was stimulated 4 to 5-fold over the basal release at nanomolar concentrations of synthetic CRF. CRF analogues stimulated ACTHβ-endorphin release with the same order of potency in the tumor cells as in primary cultures of anterior pituitary cells. A 90-min exposure to CRF elicited a 29–35% increase in total ACTH and β-endorphin immunoreactivity in tumor cell cultures. Dexamethasone markedly inhibited CRF-stimulated and basal ACTH and β-endorphin release. AtT-20D16-16 cells may serve as a good model system for studying the biochemistry of CRF receptor-mediated events involved in ACTHβ-endorphin release and synthesis.  相似文献   

6.
H D Rees  A J Dunn  P M Iuvone 《Life sciences》1976,18(11):1333-1339
ACTH1?24, ACTH4?10, ACTH4?10(D-phe), lysine vasopressin (LVP) or an amino acid mixture were administered to mice using bilateral intraventricular injections (5×10?9 moles per mouse). Behavioral observations were made for the subsequent 85 minutes, and the incorporation of subcutaneously injected [3H]lysine into brain proteins assayed for the last 10 minutes of this period. Mice injected with ACTH1?24 showed the previously reported stretching and yawning syndrome, an effect also observed with ACTH4?10(D-phe) but less often. These same peptides also induced a pronounced increase in the proportion of time mice spent grooming. LVP caused a dramatic hyperactivity; mice so injected moved continously about the cage occasionally eating or grooming, but were never still. Injection with ACTH1?24 or ACTH4?10(D-phe), but not ACTH4?10 or LVP, caused significant increases in the incorporation of [3H]lysine into brain protein.  相似文献   

7.
In homogenates of Macacamulatta (Rhesus) or Cebusapella amygdaloid nuclear complex, adenylate cyclase activity was approximately doubled by either 10μM dopamine or 8mM NaF. In the presence of morphine, the stimulation by dopamine was reduced. A 90–100% inhibition of the dopamine stimulation was obtained with 20μM, and a 50% inhibition, with 5μM morphine. The effects of 10μM morphine on dopamine stimulation were reversed by 10μM naloxone. Morphine itself did not significantly affect the basal adenylate cyclase activity, but in the presence of 10μM morphine the stimulation by 8mM NaF was reduced approxiamtely 50%. The data suggest an action of morphine at a receptor site which is distinct from the dopamine receptor, but which inhibits the dopamine-stimulated adenylate cyclase. In addition, the cyclic GMP content of Cebus amygdala slices was reduced by 50–75% during incubation for 5–20 minutes with morphine. Maximum effects on cyclic GMP were obtained with 10μM, and half-maximum effects, with 0.1μM morphine. The effect of morphine on amygdala cyclic GMP was not reversed by naloxone. Thus, this action of morphine may not be receptor mediated, or may involve the interaction of morphine with receptors other than the opiate receptor.  相似文献   

8.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

9.
Vasoactive intestinal peptide (VIP), secretin, catecholamines and prostaglandin E1 (PGE1) in the presence of a cyclic nucleotide phosphodiesterase inhibitor stimulate the accumulation of cyclic AMP in two colorectal carcinoma cell lines (HT 29 and HRT 18) with subsequent activation of the cyclic AMP-dependent protein kinases. In HT 29 cells incubated without phosphodiesterase inhibitor, 10?9 M VIP promotes a rapid and specific activation of the low Km cyclic AMP phosphodiesterase (1.7-fold); at 25°C the effect is maintained for more than 15 min, while at 37°C the activity returns to basal value within 15 min. As shown by dose-response studies, VIP is by far the most effective inducer (Ka = 4 · 10?10M) of the cyclic AMP phosphodiesterase activity; partial activation of the enzyme is obtained by 3 · 10?7 M secretin, 10?5 M isoproterenol and 10?5 M PGE1; PGE2 and epinephrine are without effect. In HRT 18 cells VIP is less active (Ka = 2 · 10?9M) whereas 10?6 M PGE1, 10?6 M PGE2 and 10?5 M epinephrine are potent inducers of the phosphodiesterase activity. The positive cell response to dibutyryl-cyclic AMP further indicates that cyclic AMP is a mediator in the phosphodiesterase activation process. The incubation kinetics and dose response effects of the various agonists on the cyclic AMP-dependent protein kinase activity determined for both cell types in the same conditions show a striking similarity to those of phosphodiesterase. Thus coordinate regulation of both enzymes by cyclic AMP was observed in all incubation conditions.  相似文献   

10.
The effect of dopamine on the cyclic AMP concentration in the rat spleen lymphocytes has been investigated invitro. It has been shown that dopamine in concentration above 10?6M induces a significant increase of cyclic AMP level. The maximal stimulatory effect was observed after 10 minutes of the lymphocytes incubation with dopamine. These data suggest that the dopamine receptor in lymphocyte belongs to D-1 category.  相似文献   

11.
Substitution of tryptophan9 in ACTH1–24 by isoleucine results in complete loss of biological activity. A dose of 3.4 × 10?5 M per ml fails to stimulate corticosterone and cyclic AMP production. This analogue inhibits cyclic AMP production and corticosterone production induced by ACTH1–24 in isolated adrenal cortex cells. The I50 values for corticosterone and cyclic AMP inhibition are 2.3 × 10?6 M and 3.4 × 10?6 M respectively.  相似文献   

12.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 120 of that of bradykinin (BK) on a weight basis. The activity of PGF and PGF was only 120 of that of PGE1 or PGE2.In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1318 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the antihistamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   

13.
Homogenates of adult Schistosoma mansoni (blood flukes), isolated from the porto-mesenteric veins of infected mice, contain substantial activities of adenylyl cyclase, cyclic AMP phosphodiesterase, and a cyclic AMP stimulated protein kinase. The adenylyl cyclase, which is largely sedimentable at 10,000xg, is stimulated 20-fold by 10mM sodium fluoride and 1.4 to 2-fold by serotonin, glucagon, prostaglandins E1, E2 or B1. The phosphodiesterase, which is largely sedimentable at 10,000xg, is inhibited by both aminophylline and papaverine but is not influenced by 10mM sodium fluoride. The protein kinase, which is present in the 10,000xg supernatant is stimulated 4 to 8-fold by either cyclic AMP or cyclic GMP. There is a preference for cyclic AMP (K12 = 1.1×10?7M) over cyclic GMP (K12 = 4.5×10?6M). If intact worms are incubated in a glucose free medium there is a mobilization of glycogen stores which is preceded by a rise in cyclic AMP concentration. In a medium with 5mM glucose there is neither a rise in cyclic AMP nor mobilization of glycogen.  相似文献   

14.
The RN46A cell line was derived from embryonic day 13 rat medullary raphe cells by infection with a retrovirus encoding the temperature-sensitive mutant of SV 40 large T antigen (tsT-ag). The RN46A cell line is neuronally restricted and constitutively differentiates following a shift to nonpermissive temperature. Differentiated RN46A cells express low levels of tryptophan hydroxylase (TPH) but no detectable levels of serotonin (5-HT). Treatment of cultures with the adrenocorticotrophic hormone peptide ACTH4–10 up-regulates the expression of TPH immunoreactivity in differentiated RN46A cells, but 5-HT synthesis requires initial treatment with ACTH4–10, followed by partial membrane depolarizing conditions. Up-regulation of TPH by ACTH4–10 is apparently due to activation of adenylate cyclase, whereas the increased 5-HT synthesis with membrane depolarization can be blocked with the voltage-sensitive Ca2+ -channel blockers nifedipine and ω-conotoxin. ACTH4–10 treatment also markedly up-regulates the expression of the 5-HT reuptake transporter, as do dibutyryl cyclic AMP and forskolin; chronic membrane depolarization has no effect on 5-HT reuptake. The expression of the high-affinity 5-HT1A receptor is increased threefold by ACTH4–10 treatment during differentiation and fivefold by differentiation under partial membrane depolarizing conditions. Combining ACTH4–10 treatment and membrane depolarization does not increase expression of the 5-HT1A receptor further. 5-HT release is constitutive in ACTH-treated RN46A cells and linked to spontaneous synaptic vesicle fusion in RN46A cells. Considered with previous results, these data indicate that multiple effectors, ACTH, brain-derived neurotrophic factor, and membrane depolarization, have both distinct and overlapping effects that regulate specific elements of the serotonergic neuronal phenotype during differentiation and maturation. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
B B Fuller  D H Viskochil 《Life sciences》1979,24(26):2405-2415
Exposure of mouse melanoma cells in culture to MSH (melanocyte stimulating hormone) results in a marked increase in tyrosinase (O-diphenyl: O2 oxidoreductase) activity following a lag period of 6–9 hours. Within 20 minutes after exposure of cells to MSH, the intracellular levels of cyclic AMP rise to levels which are ten times those of controls but fall to concentrations twice control values by 60 minutes. Transient increases in both protein and RNA synthetic rates also occur following MSH administration correlating in time with the dramatic but rapidly decaying increase in cellular cyclic AMP. The increase in tyrosinase activity observed in response to either MSH, dibutyryl cAMP, or theophylline, is completely suppressed by the addition of either cycloheximide (0.28 μg/ml) or actinomycin D (0.05 μg/ml) as is the basal activity of the enzyme. Results from 14C/3H leucine studies suggest that MSH may cause increased denovo synthesis of tyrosinase.  相似文献   

16.
Corticotropin (1–24) tetracosapeptide (ACTH1–24) induces a small but significant increase in the incorporation of radioactive leucine into trichloracetic insoluble proteins of a mouse adrenal cell line Y1. Neither cyclic AMP, nor cholera toxin or a nitrophenyl sulfenyl derivative of ACTH1–24 (NPS-ACTH1–24) have any effects.After being labelled with radioactive leucine in the presence or absence of ACTH, the cells were solbilized in 1 % sodium dodecylsulfate and subjected to 20 % sodium dodecylsulfate polyacrylamide gels electrophoresis. ACTH1–24 was found to induce a dramatic increase in the incorporation of radioactive leucine into a small peptide (MW 3500). This effect was mimicked by other steroidogenic compounds such as cholera toxin, cyclic AMP, NPS-ACTH1–24 but not by ACTH11–24, a non steroidogenic analogue of ACTH.  相似文献   

17.
Adherence and phagocytosis of 51chromium labeled sheep red blood cells ([51Cr]-sRBC) by P388 D1 cells in tissue culture were studied under various conditions and were found to possess certain requirements including opsonization, temperature, microfilaments and cyclic nucleotide levels. Exogenous administration of 10?2 M N6, O2-dibutyryl adenosine 3′–5′ cyclic monophosphoric acid (db-cAMP) or adenosine 3′–5′ cyclic monophosphoric acid (cAMP) inhibited phagocytosis of opsonized [51Cr]-sRBC by 36 and 42%, respectively. Aminophylline potentiated the inhibitory response to both cAMP and db-cAMP. The measurement of endogenous cyclic nucleotide levels during phagocytosis of opsonized sRBC showed a rise in guanosine 3′–5′ cyclic monophosphate (cGMP) during the first 5 min with a gradual decline to control levels at 45 min and a rise in cAMP levels reaching a peak at 30 min which remained above control values for the duration of the experiment. As the rate of phagocytosis decreased the ratio of cAMPcGMP increased. These observations emphasize the importance of metabolic functions and cyclic nucleotides during phagocytosis by the P388 D1 cells and strengthen the usefulness of the P388 D1 cells as a model in evaluating various macrophage activities.  相似文献   

18.
Less cyclic adenosine 3′:5′ monophosphate (cAMP) accumulated in rat pineal gland, invivo, after two doses of l-isoproterenol (5mg/kg, i.p.) than after one dose. A single injection of l-isoproterenol decreased the ability of l-isoproterenol to activate adenylate cyclase and increased the activity of the low Km phosphodiesterase (PDE). Tolerance to l-isoproterenol-induced accumulation of cAMP in rat pineal invivo may be due to decreased responsiveness of adenylate cyclase as well as to increased activity of PDE.  相似文献   

19.
A single platelet thrombus was formed in an arteriole of the hamster cheek pouch by electrical stimulation followed by topical application of ADP. The sizes of the thrombi were continuously recorded with a photocell placed on a TV monitor screen and quantified by areas on the record. Repeated application of small doses of ADP (5–15 nmol/10 μl) resulted in very reproducible formation of the thrombi, and the size of the thrombi was reduced dose-dependently by topical application of PGI2. Three drugs were tested in this model. Cycloxygenase inhibitor (indomethacin 10 mg/kg, i.p.) increased the formatiion of thrombi, while a smaller dose (3 mg/kg) did not have any significant effect. This could be explained by inhibition of the generation of endogemous PGI2, since aggregation of hamster platelets by ADP was not inhibited by indomethacin in vitro. EG-626 (phthalazinol, a phosphodiesterase inhibitor) (300 mg/kg, i.p.) decreased the size of thrombus. AI-122 (1.0 mg/kg, i.p.) which has been proven to enhance PGI2 biosynthesis from isolated rat aortae, also decreased the formation. Thus, drugs such as EG-626 or AI-122 are quite promising as anti-thrombic drugs.  相似文献   

20.
The possible role of membrane sialic acid in the action of ACTH was investigated in rat adrenal cells. After treatment with neuraminidase, the cells showed a diminished steroidogenic response to ACTH while the response to cyclic AMP and dibutyryl cyclic AMP was unaffected. 11β-hydroxylation of deoxycorticosterone (DOC) was also not impaired. Dose response curves for three ACTH peptides (ACTH1–39′, ACTH1–24 and ACTH1–10) with neuraminidase treated cells suggest that sialic acid residues on the glycoproteins of the plasma membrane may either impart affinity to the plasma membrane for ACTH molecule or facilitate transmission of the signal arising from ACTH-receptor interaction to the catalytic site of adenyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号