首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sample of 15 cultivars and 56 Pisum accessions from the JIC germplasm core collection has been studied using a modification of the SSAP (sequence-specific amplification polymorphisms) technique; the specific primer was designed to correspond to the polypurine tract (PPT) of PDR1, a Ty1-copia group retrotransposon of pea. Most of these SSAP products were shown to be PDR1 derived. The PDR1 SSAP markers are more informative than previously studied AFLP or RFLP markers and are distributed throughout the genome. Their pattern of variation makes them ideal for integrating genetic maps derived from related crosses. Data sets obtained with AFLP and PDR1 SSAP markers were used to construct neighbour-joining trees and for principal component analysis. These data sets give greater resolution than hitherto available for the characterisation of variation within Pisum, showing that the genus has three main groups: P. fulvum, P. abyssinicum and all other Pisum spp. P. abyssinicum is not a subgroup of cultivated P. sativum, as was previously thought, but has probably been domesticated independently. Modern cultivars are shown to form a single group within Pisum as a whole. Received: 21 April 1998 / Accepted: 9 June 1998  相似文献   

2.
The variation in transposition history of different Ty1-copia group LTR retrotransposons in the species lineages of the Pisum genus has been investigated. A heterogeneous population of Ty1-copia elements was isolated by degenerate PCR and two of these (Tps12 and Tps19) were selected on the basis of their copy number and sequence conservation between closely related species for further in-depth study of their transpositional history in Pisum species. The insertional polymorphism of these elements and the previously characterised PDR1 element was studied by sequence-specific amplification polymorphism (SSAP). Each of these elements reveals a unique transpositional history within 55 diverse Pisum accessions. Phylogenetic trees based on the SSAP data show that SSAP markers for individual elements are able to resolve different species lineages within the Pisum genus. Finally, the SSAP data from all of these retrotransposon markers were combined to reveal a detailed picture of the intra and inter-species relationships within Pisum. Received: 23 January 2000 / Accepted: 24 March 2000  相似文献   

3.
A DAPI and ethidium bromide flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum was conducted. The material included 38 accessions of P. sativum of widely different geographic origin and altogether 14 samples of P. elatius, P. abyssinicum, P. humile and P. fulvum. The relative genome size values obtained with the three staining methods were strongly correlated. No evidence for genome size variation was found among P. sativum cultivars. In particular, certain Italian cultivars, for which strongly deviating C-values have been reported, proved to be invariant. The only occasion when ambiguous evidence for marginal genome size variation was found was when all 38 accessions taxonomically affiliated with P. sativum were considered. Pisum abyssinicum and P. fulvum differed from P. sativum by about 1.066-and 1.070-fold, respectively; 1 accession of P. humile differed by 1.089-fold, and 2 of P. elatius by 1.122- and 1.195-fold, respectively (ethidiumbromide comparison), while the other accessions of these taxa were not different from P. sativum. This variation may indicate taxonomic inhomogeneity and demands further investigation. Cultivated P. sativum has long been suspected of not being constant with respect to genome size. As shown here, these findings were not based on genuine differences, but rather were technical in origin.  相似文献   

4.
We characterised the extent of heterogeneity among PDR1 elements, a Ty1/copia-like retrotransposon family in pea, by restriction mapping and PCR with primers designed to amplify four functional domains. The data suggest that two main subfamilies of PDR1 differ in the size of their 5′-region. There are also sequence variants and rearranged copies which include a wide range of deletions of different sizes and deletions combined with insertions of host DNA, or inversions of various regions of the retrotransposon. A deletion hot-spot has been found at nucleotide position 394, where buffer sequences of 26 bp and 38 bp containing microsatellite motifs have been generated. There is more heterogeneity in the gag domain of PDR1 than in other functional domains, and the extent and pattern of this diversity was assessed among 56 Pisum accessions. We found a higher rate of rearrangement and sequence variation within the gag domain of PDR1 in P. fulvum and P. abyssinicum accessions than would be expected from the degree of insertion site polymorphism. A neighbour-joining phylogenetic tree constructed for gag sequences has a similar branching pattern to the equivalent insertion site tree, implying that the PDR1 family and its gag domain have coevolved with the pea genome. Combining both trees revealed clear and distinct subgroups among the Pisum ssp. Received: 17 March 1999 / Accepted: 20 July 1999  相似文献   

5.
Four molecular markers, including inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplified polymorphism (SSAP), and amplified fragment length polymorphism (AFLP), were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 28 genotypes in the genus Diospyros. The results were as follows: (1) the highest level of detected polymorphism were observed for IRAP; (2) AFLP was the most efficient marker system due to the simultaneous detection of abundant polymorphism markers per single reaction; (3) the marker index (MI) value was lower for SSAP than for AFLP, but SSAP had a higher level of detected polymorphism than AFLP; (4) the correlation coefficients of similarity were statistically significant for all four marker systems; (5) the four molecular markers yielded similar phylogenetic trees. To our knowledge, this was the first detailed report of a comparison of performance among three retrotransposon-based molecular markers (IRAP, REMAP, SSAP) and the AFLP technique (DNA-based molecular marker) on a set of samples of Diospyros. The results provide guidance for future efficient use of these molecular methods in the genetic analysis of Diospyros.  相似文献   

6.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

7.
Genetic similarity among cultivars of Phyllostachys pubescens   总被引:1,自引:0,他引:1  
Phyllostachys pubescens is the most important economic bamboo species in China, which grows widely in the South of China. There are more than ten cultivars in this species but their genetic relationship still remains unknown. We used both amplified fragment length polymorphism (AFLP) and inter-simple sequence repeat (ISSR) techniques to determine genetic similarity among ten cultivars of P. pubescens and two related species. Eight hundred and twenty seven bands, in which 495 are polymorphic, were detected using 15 pairs of AFLP primers whereas total 231 bands, in which 154 bands are polymorphic, were scored using 16 ISSR primers. Statistic analysis showed that the genetic similarity matrices obtained from these two sets of molecular markers had a significant correlation (R = 0.959, P = 0.013). The dendrogram generated with AFLP and ISSR markers could clearly genetically identify ten cultivars of P. pubescens that had high similarity with genetic distances ranging from 0.023 to 0.108, and could be divided into three groups based on their genetic variation and similarity. Our results suggest that these molecular markers are useful to genetically classify cultivars or varieties of a species, particularly a bamboo species.  相似文献   

8.
Sequence-specific amplified polymorphism (SSAP) technology is a novel, anchored PCR approach derived from AFLP, which amplifies the region between a transposon insertion and an adjacent restriction site and have higher levels of polymorphism. In the current study, we developed 16 SSAP markers based on the long terminal repeat (LTR) sequences of Ty1-copia retrotransposons in the peach and used them for DNA profiling of 52 individual peaches: 44 peach cultivars and 8 ornamental peaches. These primer combinations produced a total of 1,553 fragments and 1,517 polymorphic bands with a polymorphism percentage of 97.7%. Furthermore, the Shannon's information index of each primer combination ranged from 0.1593 to 0.4456. Neighbor-joining analyses revealed two main genetic clusters, corresponding to the fruit flesh types: (A-1) MF (melting flesh) with clingstone and ornamental peaches; (A-2) MF with freestone and NMF (non-melting flesh) with clingstone. Finally, cluster analyses revealed that all ornamental peaches are closely related to the MF with clingstone peach cultivars. The application of these primer combinations identified using SSAP will facilitate future cultivar identification and germplasm management in peaches.  相似文献   

9.
Genetic diversity, population structure and genome-wide marker-trait association analysis was conducted for the USDA pea (Pisum sativum L.) core collection. The core collection contained 285 accessions with diverse phenotypes and geographic origins. The 137 DNA markers included 102 polymorphic fragments amplified by 15 microsatellite primer pairs, 36 RAPD loci and one SCAR (sequence characterized amplified region) marker. The 49 phenotypic traits fall into the categories of seed macro- and micro-nutrients, disease resistance, agronomic traits and seed characteristics. Genetic diversity, population structure and marker-trait association were analyzed with the software packages PowerMarker, STUCTURE and TASSEL, respectively. A great amount of variation was revealed by the DNA markers at the molecular level. Identified were three sub-populations that constituted 56.1%, 13.0% and 30.9%, respectively, of the USDA Pisum core collection. The first sub-population is comprised of all cultivated pea varieties and landraces; the second of wild P. sativum ssp. elatius and abyssinicum and the accessions from the Asian highland (Afghanistan, India, Pakistan, China and Nepal); while the third is an admixture containing alleles from the first and second sub-populations. This structure was achieved using a stringent cutoff point of 15% admixture (q-value 85%) of the collection. Significant marker-trait associations were identified among certain markers with eight mineral nutrient concentrations in seed and other important phenotypic traits. Fifteen pairs of associations were at the significant levels of P ?? 0.01 when tested using the three statistical models. These markers will be useful in marker-assisted selection to breed pea cultivars with desirable agronomic traits and end-user qualities.  相似文献   

10.
Twelve different Ty1-copia and Ty3-gypsy group LTR retrotransposons were compared for their usefulness in SSAP marker development in two agriculturally important Vicia species. Three of the retrotransposons, PDR1, Tps19 and Tvf4, yielded useful SSAP marker systems in V. faba, and V. narbonensis. Another, Tvf1 was a good source of SSAP markers in V. narbonensis alone. The optimized SSAP marker systems were applied to the analysis of two diverse Vicia germplasm sets. Two hundred and two polymorphic Tvf1 SSAP markers were scored in 56 V. narbonensis samples and 196 polymorphic markers derived from the other three most useful retrotransposons were scored in a collection of 20 V. faba samples. The marker data were then used to construct phylogenetic trees. The trees for both species tend to show long-branch lengths, with rather little fine structure. Some V. narbonensis accessions cluster by geographical origin but many do not and a given geographical region is often represented by multiple diverse groups in the tree, suggesting a deep and ancient structure for the diversity of V. narbonensis that spans its current geographic range. The tree for the V. faba accessions also shows very limited clustering with geographical origin and no obvious correlation between diversity and morphology-based taxonomic groupings for the species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Alberto Martín Sanz, Susana Gilsanz Gonzalez and Naeem H. Syed have made equal contributions.  相似文献   

11.
A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers   总被引:2,自引:0,他引:2  
Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F2 population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map.  相似文献   

12.
AFLP and RAPDmarkers were employed in sixteen diploid cotton (Gossypium sp) cultivars for genetic diversity estimation and cultivar identification. Polymorphism information content (PIC) and percent polymorphism were found to be more for AFLP markers as compared to RAPD markers. Average Jaccard’s genetic similarity index was found to be almost similar using either AFLP or RAPD markers. All the cultivars could be distinguished from one another using AFLP markers and also by the combined RAPD profiles. Cultivar identification indicators like resolving power, marker index and probability of chance identity of two cultivars suggested the usefulness of AFLP markers over the RAPD markers. AFLP and RAPD analyses revealed limited genetic diversity in the studied cultivars. Cluster analysis of both RAPD and AFLP data produced two clusters, one containing cultivars of G. herbaceum and another containing cultivars of G. arboreum species. Highly positive correlation between cophenetic matrices using RAPD and AFLP markers was observed. AFLP markers were found to be more efficient for genetic diversity estimation, polymorphism detection and cultivar identification.  相似文献   

13.
The retrotransposon-based sequence-specific amplification polymorphism (SSAP) marker system was used to assess the genetic diversities of collections of tomato and pepper industrial lines. The utility of SSAP markers was compared to that of amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. On the basis of our results, SSAP is most informative of the three systems for studying genetic diversity in tomato and pepper, with a significant correlation of genetic relationships between different SSAP datasets and between SSAP, AFLP and SSR markers. SSAP showed about four- to ninefold more diversity than AFLP and had the highest number of polymorphic bands per assay ratio and the highest marker index. For tomato, SSAP is more suitable for inferring overall genetic variation and relationships, while SSR has the ability to detect specific genetic relationships. All three marker results for pepper showed general agreement with pepper types. Additionally, retrotransposon sequences isolated from one species can be used in related Solanaceae genera. These results suggest that different marker systems are suited for studying genetic diversity in different contexts depending on the group studied, where discordance between different marker systems can be very informative for understanding genetic relationships within the study group.  相似文献   

14.
The genetic structure and evolutionary history of the genus Pisum were studied exploiting our germplasm collection to compare the contribution of different mechanisms to the generation of diversity. We used sequence-specific amplification polymorphism (SSAP) markers to assess insertion site polymorphism generated by a representative of each of the two major groups of LTR-containing retrotransposons, PDR1 (Ty1/copia-like) and Cyclops (Ty3/gypsy-like), together with Pis1, a member of the En/Spm transposon superfamily. The analysis of extended sets of the four main Pisum species, P. fulvum, P. elatius, P. abyssinicum, and P. sativum, together with the reference set, revealed a distinct pattern of the NJ (Neighbor-Joining) tree for each basic lineage, which reflects the different evolutionary history of each species. The SSAP markers showed that Pisum is exceptionally polymorphic for an inbreeding species. The patterns of phylogenetic relationships deduced from different transposable elements were in general agreement. The retrotransposon-derived markers gave a clearer separation of the main lineages than the Pis1 markers and were able to distinguish the truly wild form of P. elatius from the antecedents of P. sativum. There were more species-specific and unique PDR1 markers than Pis1 markers in P. fulvum and P. elatius, pointing to PDR1 activity during speciation and diversification, but the proportion of these markers is low. The overall genetic diversity of Pisum and the extreme polymorphism in all species, except P. abyssinicum, indicate a high contribution of recombination between multiple ancestral lineages compared to transposition within lineages. The two independently domesticated pea species, P. abyssinicum and P. sativum, arose in contrasting ways from the common processes of hybridization, introgression, and selection without associated transpositional activity.  相似文献   

15.
We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.  相似文献   

16.
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.  相似文献   

17.
Cornman RS  Arnold ML 《Genetica》2009,135(1):25-38
DNA markers based on transposable-element polymorphisms are potentially useful alternatives to anonymous fragment-length polymorphisms (AFLPs). We developed the retrotransposon sequence-specific amplified polymorphism (retrotransposon SSAP) technique for the angiosperm Iris missouriensis (Iridaceae) in order to evaluate its use in generating population-genetic markers. Our cloning strategy identified two groups of long-terminal repeat retrotransposons of the IRRE family. Primers homologous to conserved regions of these elements generated repeatable and polymorphic markers. In comparison, the AFLP protocol failed to produce useful markers in our hands in this species. To investigate the distribution and evolutionary tempo of the two retrotransposons, we developed a phylogeny of representative species of subgenus Limniris based on chloroplast sequence. Sequences of both groups of retrotransposons were widespread in Limniris, but we also found evidence of substantial sequence and copy-number evolution since the divergence of I. missouriensis from other Limniris species. We corroborated these results with quantitative real-time PCR estimates of relative copy number. Importantly, the geographic structure of retrotransposon SSAP was strikingly different for the two groups of retrotransposons, indicating that different mutational dynamics and/or selective pressures govern their distribution. Although these primers should be useful for population-genetic studies of Iris missouriensis and other Limniris species, our findings reinforce the need for caution in evaluating transposable-element markers used to analyze the relatedness of populations or cultivars, as very different conclusions may be reached depending on the sequence amplified.  相似文献   

18.
Bacterial spot, one of the most damaging diseases of pepper, is caused by Xanthomonas euvesicatoria. This pathogen has worldwide distribution and it is particularly devastating in tropical and sub-tropical regions where high temperatures and frequent precipitation provide ideal conditions for disease development. Three dominant resistance genes have been deployed singly and in combination in commercial cultivars, but have been rendered ineffectual by the high mutation rate or deletion of the corresponding cognate effector genes. These genes are missing in race P6, and their absence makes this race virulent on all commercial pepper cultivars. The breeding line ECW12346 is the only source of resistance to race P6 in Capsicum annuum, and displays a non-hypersensitive type of resistance. Characterization of this resistance has identified two recessive genes: bs5 and bs6. Individual analysis of these genes revealed that bs5 confers a greater level of resistance than bs6 at 25°C, but in combination they confer full resistance to P6 indicating at least additive gene action. Tests carried out at 30°C showed that both resistances are compromised to a significant extent, but in combination they provide almost full resistance to race P6 indicating a positive epistatic interaction at high temperatures. A scan of the pepper genome with restriction fragment length polymorphism and AFLP markers led to the identification of a set of AFLP markers for bs5. Allele-specific primers for a PCR-based bs5-marker have been developed to facilitate the genetic manipulation of this gene.  相似文献   

19.
Grapevine germplasm, including 38 of the main Portuguese cultivars and three foreign cultivars, Pinot Noir, Pinot Blanc and Chasselas, used as a reference, and 37 true-to-type clones from the Alvarinho, Arinto, Loureiro, Moscatel Galego Branco, Trajadura and Vinh?o cultivars were studied using AFLP and three retrotransposon-based molecular techniques, IRAP, REMAP and SSAP. To study the retrotransposon-based polymorphisms, 18 primers based on the LTR sequences of Tvv1, Gret1 and Vine-1 were used. In the analysis of 41 cultivars, 517 IRAP, REMAP, AFLP and SSAP fragments were obtained, 83% of which were polymorphic. For IRAP, only the Tvv1Fa primer amplified DNA fragments. In the REMAP analysis, the Tvv1Fa-Ms14 primer combination only produced polymorphic bands, and the Vine-1 primers produced mainly ISSR fragments. The highest number of polymorphic fragments was found for AFLP. Both AFLP and SSAP showed a greater capacity for identifying clones, resulting in 15 and 9 clones identified, respectively. Together, all of the techniques allowed for the identification of 54% of the studied clones, which is an important step in solving one of the challenges that viticulture currently faces.  相似文献   

20.
This study characterises the genetic variability of fig, Ficus carica L., using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. It compares the efficiency and utility of the two techniques in detecting variation and establishing genetic relationships among Tunisian fig cultivars. Our results show that using both marker systems, the Tunisian fig germ plasm is characterised by having a large genetic diversity at the deoxyribonucleic acid level, as most of AFLP bands were detected and all SSR markers were polymorphic. In fact, 351 (342 polymorphic) and 57 (57 polymorphic) bands were detected using AFLP and SSR primers, respectively. SSR markers were the most polymorphic with an average polymorphic information content value of 0.94, while AFLP markers showed the highest effective multiplex ratio (56.9) and marker index (45.2). The effective marker index was recorded highest (4.19) for AFLP markers and lowest (0.70) for the SSR ones. Our results demonstrate that (1) independent as well as combined analyses of cluster analyses of SSR and AFLP fragments showed that cultivars are clustered independently from their geographical origin, horticultural classifications and tree sex; (2) the analysis of molecular variance allowed the partitioning of genetic variation within and among fig groups and showed greater variation within groups and (3) AFLP and SSR markers datasets showed positive correlation. This study suggests the SSR and AFLP markers are suitable for diversity analysis and cultivars fingerprinting. An understanding of the genetic diversity and population structure of F. carica in Tunisia can also provide insight into the conservation and management of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号