首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal cone cells exhibit distinctive photoresponse with a more restrained sensitivity to light and a more rapid shutoff kinetics than those of rods. To understand the molecular basis for these characteristics of cone responses, we focused on the opsin deactivation process initiated by G protein-coupled receptor kinase (GRK) 1 and GRK7 in the zebrafish, an animal model suitable for studies on retinal physiology and biochemistry. Screening of the ocular cDNAs identified two homologs for each of GRK1 (1A and 1B) and GRK7 (7-1 and 7-2), and they were classified into three GRK subfamilies, 1 A, 1B and 7 by phylogenetic analysis. In situ hybridization and immunohistochemical studies localized both GRK1B and GRK7-1 in the cone outer segments and GRK1A in the rod outer segments. The opsin/GRKs molar ratio was estimated to be 569 in the rod and 153 in the cone. The recombinant GRKs phosphorylated light-activated rhodopsin, and the Vmax value of the major cone subtype, GRK7-1, was 32-fold higher than that of the rod kinase, GRK1A. The reinforced activity of the cone kinase should provide a strengthened shutoff mechanism of the light-signaling in the cone and contribute to the characteristics of the cone responses by reducing signal amplification efficiency.  相似文献   

2.
Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.  相似文献   

3.
The deactivation of visual pigments involved in phototransduction is critical for recovering sensitivity after exposure to light in rods and cones of the vertebrate retina. In rods, phosphorylation of rhodopsin by rhodopsin kinase (GRK1) and the subsequent binding of visual arrestin completely terminates phototransduction. Although signal termination in cones is predicted to occur via a similar mechanism as in rods, there may be differences due to the expression of related but distinct gene products. While rods only express GRK1, cones in some species express only GRK1 or GRK7 and others express both GRKs. In the mouse, cone opsin is phosphorylated by GRK1, but this has not been demonstrated in mammals that express GRK7 in cones. We compared cone opsin phosphorylation in intact retinas from the 13-lined ground squirrel (GS) and pig, cone- and rod-dominant mammals, respectively, which both express GRK7. M opsin phosphorylation increased during continuous exposure to light, then declined between 3 and 6 min. In contrast, rhodopsin phosphorylation continued to increase during this time period. In GS retina homogenates, anti-GS GRK7 antibody blocked M opsin phosphorylation by 73%. In pig retina homogenates, only 20% inhibition was observed, possibly due to phosphorylation by GRK1 released from rods during homogenization. Our results suggest that GRK7 phosphorylates M opsin in both of these mammals. Using an in vitro GTPgammaS binding assay, we also found that the ability of recombinant M opsin to activate G(t) was greatly reduced by phosphorylation. Therefore, phosphorylation may participate directly in the termination of phototransduction in cones by decreasing the activity of M opsin.  相似文献   

4.
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases.  相似文献   

5.
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.  相似文献   

6.
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.  相似文献   

7.
The neuronal Ca2+-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics.  相似文献   

8.
The G‐protein‐coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock‐down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP‐dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase‐dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C‐terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho‐null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR.  相似文献   

9.
One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light [1], cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors [2]. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling [3]. Indeed, biochemical [3], [4], [5], [6] and [7] and physiological [8] studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved.  相似文献   

10.
Recoverin is suggested to inhibit rhodopsin kinase (GRK1) at high [Ca2+] in the dark state of the photoreceptor cell. Decreasing [Ca2+] terminates inhibition and facilitates phosphorylation of illuminated rhodopsin (Rh*). When recoverin formed a complex with GRK1, it did not interfere with the phosphorylation of a C-terminal peptide of rhodopsin (S338-A348) by GRK1. Furthermore, while GRK1 competed with transducin on interaction with rhodopsin and thereby suppressed GTPase activity of transducin, recoverin in the complex with GRK1 did not influence this competition. Constructs of GRK1 that encompass its N-terminal, catalytic or C-terminal domains were used in pull-down assays and surface plasmon resonance analysis to monitor interaction. Ca2+-recoverin bound to the N-terminus of GRK1, but did not bind to the other constructs. GRK1 interacted with rhodopsin also by its N-terminus in a light-dependent manner. No interaction was observed with the C-terminus. We conclude that inhibition of GRK1 by recoverin is not the result of their direct competition for the same docking site on Rh*, although the interaction sites of GRK1/Rh* and GRK1/recoverin partially overlap. The N-terminus of GRK1 is recognized by Rh* leading to a conformational change which moves the C-terminus of Rh* into the catalytic kinase groove. Ca2+-recoverin interacting with the N-terminus of GRK1 prevents this conformational change and thus blocks Rh* phosphorylation by GRK1.  相似文献   

11.
G-protein-coupled receptor kinase 2 (GRK2) is activated by free Gbetagamma subunits. A Gbetagamma binding site of GRK2 is localized in the carboxyl-terminal pleckstrin homology domain. This Gbetagamma binding site of GRK2 also regulates Gbetagamma-stimulated signaling by sequestering free Gbetagamma subunits. We report here that truncation of the carboxyl-terminal Gbetagamma binding site of GRK2 did not abolish the Gbetagamma regulatory activity of GRK2 as determined by the inhibition of a Gbetagamma-stimulated increase in inositol phosphates in cells. This finding suggested the presence of a second Gbetagamma binding site in GRK2. And indeed, the amino terminus of GRK2 (GRK2(1-185)) inhibited a Gbetagamma-stimulated inositol phosphate signal in cells, purified GRK2(1-185) suppressed the Gbetagamma-stimulated phosphorylation of rhodopsin, and GRK2(1-185) bound directly to purified Gbetagamma subunits. The amino-terminal Gbetagamma regulatory site does not overlap with the RGS domain of GRK-2 because GRK2(1-53) with truncated RGS domain inhibited Gbetagamma-mediated signaling with similar potency and efficacy as did GRK2(1-185). In addition to the Gbetagamma regulatory activity, the amino-terminal Gbetagamma binding site of GRK2 affects the kinase activity of GRK2 because antibodies specifically cross-reacting with the amino terminus of GRK2 suppressed the GRK2-dependent phosphorylation of rhodopsin. The antibody-mediated inhibition was released by purified Gbetagamma subunits, strongly suggesting that Gbetagamma binding to the amino terminus of GRK2 enhances the kinase activity toward rhodopsin. Thus, the amino-terminal domain of GRK2 is a previously unrecognized Gbetagamma binding site that regulates GRK2-mediated receptor phosphorylation and inhibits Gbetagamma-stimulated signaling.  相似文献   

12.
The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.  相似文献   

13.
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.  相似文献   

14.
The G protein-coupled receptor kinases (GRKs) are important enzymes in the desensitization of activated G protein-coupled receptors (GPCR). Seven members of the GRK family have been identified to date. Among these enzymes, GRK1 is involved in phototransduction and is the most specialized kinase of the family. GRK1 phosphorylates photoactivated rhodopsin (Rho*), initiating steps in its deactivation. In this study, we found that chicken retina and pineal gland express a novel form of GRK that has sequence features characteristic of GRK1. However, unlike bovine GRK1 which is farnesylated, chicken GRK1 contains a consensus sequence for geranylgeranylation. Peptides corresponding to the C-terminal sequence of chicken GRK1 are geranylgeranylated by a cytosolic extract of chicken liver. Based on results of molecular cloning and immunolocalization, it appears that both rod and cone photoreceptors express this novel GRK1. These data indicate a larger sequence diversity of photoreceptor GRKs than anticipated previously.  相似文献   

15.
G-protein-dependent receptor kinases (GRKs) play a key role in the adaptation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid desensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of GRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovine rhodopsin kinase. The marked difference between the structure of this gene and that of another recently cloned human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family.  相似文献   

16.
In mammals, the blockade of the phototransduction cascade causes loss of vision and, in some cases, degeneration of photoreceptors. However, the molecular mechanisms that link phototransduction with photoreceptor degeneration remain to be elucidated. Here, we report that a mutation in the gene encoding a central effector of the phototransduction cascade, cGMP phosphodiesterase 6alpha'-subunit (PDE6alpha'), affects not only the vision but also the survival of cone photoreceptors in zebrafish. We isolated a zebrafish mutant, called eclipse (els), which shows no visual behavior such as optokinetic response (OKR). The cloning of the els mutant gene revealed that a missense mutation occurred in the pde6alpha' gene, resulting in a change in a conserved amino acid. The PDE6 expressed in rod photoreceptors is a heterotetramer comprising two closely related similar hydrolytic alpha and beta subunits and two identical inhibitory gamma subunits, while the PDE6 expressed in cone photoreceptors consists of two homodimers of alpha' subunits, each with gamma subunits. The els mutant displays no visual response to bright light, where cones are active, but shows relatively normal OKR to dim light, where only rods function, suggesting that only the cone-specific phototransduction pathway is disrupted in the els mutant. Furthermore, in the els mutant, cones are selectively eliminated but rods are retained at the adult stage, suggesting that cones undergo a progressive degeneration in the els mutant retinas. Taken together, these data suggest that PDE6alpha' activity is important for the survival of cones in zebrafish.  相似文献   

17.
G protein-coupled receptor homologous desensitization is intrinsically related to the function of a class of S/T kinases named G protein-coupled receptor kinases (GRK). The GRK family is composed of six cloned members, named GRK1 to 6. Studies from different laboratories have demonstrated that different calcium sensor proteins (CSP) can selectively regulate the activity of GRK subtypes. In the presence of calcium, rhodopsin kinase (GRK1) is inhibited by the photoreceptor-specific CSP recoverin through direct binding. Several other recoverin homologues (including NCS 1, VILIP 1 and hippocalcin) are also able to inhibit GRK1. The ubiquitous calcium-binding protein calmodulin (CaM) can inhibit GRK5 with a high affinity (IC(50)=40-50 nM). A direct interaction between GRK5 and Ca(2+)/CaM was documented and this binding does not influence the catalytic activity of the kinase, but rather reduced GRK5 binding to the membrane. These studies suggest that CSP act as functional analogues in mediating the regulation of different GRK subtypes by Ca(2+). This mechanism is, however, highly selective with respect to the GRK subtypes: while GRK1, but not GRK2 and GRK5, is regulated by recoverin and other NCS, GRK4, 5 and 6, that belong to the GRK4 subfamily, are potently inhibited by CaM, which had little or no effect on members of other GRK subfamilies.  相似文献   

18.
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.  相似文献   

19.
Bovine PDEdelta was originally copurified with rod cGMP phosphodiesterase (PDE) and shown to interact with prenylated, carboxymethylated C-terminal Cys residues. Other studies showed that PDEdelta can interact with several small GTPases including Rab13, Ras, Rap, and Rho6, all of which are prenylated, as well as the N-terminal portion of retinitis pigmentosa GTPase regulator and Arl2/Arl3, which are not prenylated. We show by immunocytochemistry with a PDEdelta-specific antibody that PDEdelta is present in rods and cones. We find by yeast two-hybrid screening with a PDEdelta bait that it can interact with farnesylated rhodopsin kinase (GRK1) and that prenylation is essential for this interaction. In vitro binding assays indicate that both recombinant farnesylated GRK1 and geranylgeranylated GRK7 co-precipitate with a glutathione S-transferase-PDEdelta fusion protein. Using fluorescence resonance energy transfer techniques exploiting the intrinsic tryptophan fluorescence of PDEdelta and dansylated prenyl cysteines as fluorescent ligands, we show that PDEdelta specifically binds geranylgeranyl and farnesyl moieties with a Kd of 19.06 and 0.70 microm, respectively. Our experiments establish that PDEdelta functions as a prenyl-binding protein interacting with multiple prenylated proteins.  相似文献   

20.
To investigate functions of the consensus amino terminus of G protein-coupled receptor kinases (GRKs), two amino terminus-truncated mutants (delta30 or delta15) and two single-amino-acid mutants of conserved acidic residues (D2A or E7A) of human GRK1 were constructed and expressed in human embryonic kidney 293 cells. It was shown that truncated mutations and one single-point mutation (E7A) greatly decreased GRK1's activity to phosphorylate photoactivated rhodopsin (Rho*), whereas the abilities of these mutants to phosphorylate a synthetic peptide substrate and to translocate from cytosol to rod outer segments on light activation were unaffected. Further experiments demonstrated that the same truncated mutations (delta30 or delta15) of GRK2, representative of another GRK subfamily, also abolished the kinase's activity toward Rho*. The similar single-point mutation (E5A) of GRK2 heavily impaired its phosphorylation of Rho* but did not alter its ability to phosphorylate the peptide, and the G329-rhodopsin-augmented peptide phosphorylation by GRK2 (E5A) remained unchanged. Our data, taken together, suggest that the amino terminus as well as a conserved glutamic acid in the region of GRKs appears essential for their ability to functionally interact with G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号