首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural requirements for diacylglycerols to mimic the action of tumor-promoting phorbol diesters on the epidermal growth factor (EGF) receptor of A431 human epidermoid carcinoma cells were investigated. Five biological effects were considered: inhibition of high affinity 125I-EGF binding, change in the phosphorylation state of the EGF receptor, inhibition of the EGF-dependent tyrosine phosphorylation of the EGF receptor, inhibition of [3H]phorbol 12 beta, 13 alpha-dibutyrate binding, and stimulation of calcium- and phospholipid-dependent protein kinase (C-kinase) in vitro. A marked effect of the acyl chain length, 3-10 carbons, of symmetric sn-1,2-diacylglycerols was observed on their ability to mimic the effect of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). sn-1,2-Dipropanoylglycerol did not mimic the effects of PMA, but sn-1,2-didecanoylglycerol potently mimicked PMA action. A correlation was found between the ability of these diacylglycerols to stimulate the activity of C-kinase in vitro and to mimic the effects of PMA on the EGF receptor in intact cells. Analogues of sn-1,2-dioctanoylglycerol in which the 3' hydroxyl group was substituted with hydrogen, thio or chloro moieties were inactive when assayed for their ability to stimulate C-kinase in vitro and mimic PMA action in intact cells. We conclude that the hydroxyl group of a diacylglycerol is vital for the interaction with the phorbol diester receptor. The stringent correlation between the potency of the 11 diacylglycerol analogues tested to modulate C-kinase in vitro and to mimic PMA action in vivo provides strong evidence for the hypothesis that C-kinase plays a central role in the regulation of A431 cell EGF receptors by tumor-promoting phorbol diesters.  相似文献   

2.
4 beta-Phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly inhibited the binding of low concentrations (less than 10(-9 m) of 125I-epidermal growth factor (EGF) to A431 human epidermoid carcinoma cells. However, very little change in the binding of 125-I-EGF at high concentrations (greater than 10(-8) M) was observed in response to PMA. Affinity labeling of the 170,000-dalton EGF receptor with 125I-EGF and disuccinimidyl suberate was also decreased by the tumor promoter at low, but not high, concentrations of 125I-EGF. In order to examine this action of PMA on the EGF receptor, the receptor phosphorylation state was evaluated in A431 cells that had been incubated with [32P]phosphate for 3 h prior to the addition of PMA. The 32P content of the EGF receptor purified with EGF-Sepharose was increased by 38% compared with the same amount of receptor isolated from control cells. The increase in EGF receptor phosphorylation was dose-dependent with a half-maximal effect between 0.1 and 1 nM PMA and was specific for tumor promoting analogues of phorbol diesters. Phosphoamino acid analysis indicated that the increase in the 32P content of the EGF receptor was mainly due to phosphoserine. These results demonstrate that the EGF receptor is a target for PMA action and suggest that the mechanism of PMA action on the response of cells to epidermal growth factor may be mediated in part by phosphorylation of the EGF receptor.  相似文献   

3.
Epidermal growth factor (EGF) and an EGF-like transforming growth factor (eTGF) from retrovirally transformed cells bind to a common receptor type in A431 cells. We have investigated the effects of the tumor promoter phorbol myristate acetate [PMA] on EGF/eTGF receptors in intact A431 cells. Treatment with PMA at 37 degrees C induces a complete loss of high-affinity (Kd = 35-50 pM) binding sites for eTGF and EGF on the cell surface of A431 cells. This effect is half-maximal at 0.1 nM PMA, exhibits rapid kinetics, and persists for at least 4 hr in the presence of PMA. eTGF and PMA added to intact A431 cells induce the phosphorylation of immunoprecipitable 170kd EGF/eTGF receptors. The EGF/eTGF receptor isolated from control cells was found to contain phosphoserine and phosphothreonine. PMA and eTGF caused a marked increase in the level of these two phosphoamino acids. In addition, eTGF but not PMA caused the appearance of phosphotyrosine in the EGF/eTGF receptor in vivo. We conclude that the tumor-promoting phorbol diester regulates both the affinity and phosphorylation state of the A431 cell receptor for the type alpha transforming growth factors, eTGF and EGF.  相似文献   

4.
Addition of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) to A431 human epidermoid carcinoma cells causes a marked increase in the phosphorylation state of the epidermal growth factor (EGF) receptor with a concomitant inhibition of both the high-affinity binding of 125I-EGF and the receptor tyrosine kinase activity. It was found in the present studies that the diuretic drug amiloride has no effect on the action of PMA to inhibit the binding of 125I-EGF. However, amiloride was observed to inhibit markedly the effect of PMA to cause a 3-fold increase in the phosphorylation state of the EGF receptors. In the presence of PMA and amiloride, the increase in the phosphorylation state of the EGF receptors was found to be only 1.2-fold over controls. Analysis of the EGF receptor phosphorylation sites by phosphopeptide mapping by reverse-phase h.p.l.c. demonstrated that PMA increases the phosphorylation state of the EGF receptor at many sites. One of these sites has been identified as a C-kinase substrate, threonine-654. In the presence of amiloride, PMA causes phosphorylation of threonine-654 to the same stoichiometry as that observed in the absence of amiloride. However, the marked increase in the phosphorylation state of the EGF receptor at other sites caused by PMA is abolished in the presence of amiloride. We conclude that the extensive phosphorylation of the EGF receptor at several sites caused by the addition of PMA to A431 cells is not required for the action of PMA to inhibit the high-affinity binding of 125I-EGF. The results indicate that the phosphorylation state of threonine-654 may play a role in this process.  相似文献   

5.
Epidermal growth factor (EGF) inhibited the growth of A431 human epidermoid carcinoma cells. The tumor promoting, phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) also retarded A431 cell growth. Addition of both TPA and EGF inhibited cell growth in an additive or synergistic manner depending upon the initial plating density of the cultures. EGF increased the production of diacylglycerol (60-70%) and stimulated the synthesis of phosphatidylinositol (PI) from 3H-inositol (three- to fourfold increase). Both of these responses were attenuated in the presence of TPA. TPA alone stimulated the production of diacylglycerol (DG) but had little effect on PI synthesis. The biological effect of TPA appeared to be mediated by the presence of a high-affinity receptor for phorbol esters on A431 cells. Moreover, the binding of 125I-EGF to A431 cells was unaffected by TPA, suggesting that the antagonistic effects of TPA were occurring distal to the EGF receptor. These findings also indicated that although TPA and EGF both inhibited A431 cell growth, this effect could be dissociated from changes in PI synthesis but may be dependent upon transient changes in DG production.  相似文献   

6.
Glycosphingolipids added exogenously to 3T3 cells in culture were shown to inhibit cell growth, alter the membrane affinity to platelet-derived growth factor binding, and reduce platelet-derived growth factor-stimulated membrane phosphorylation (Bremer, E., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984) J. Biol. Chem. 259, 6818-6825). This approach has been extended to the epidermal growth factor (EGF) receptor of human epidermoid carcinoma cell lines KB and A431. GM3 and GM1 gangliosides inhibited both KB cell and A431 cell growth, although GM3 was a much stronger inhibitor of both KB and A431 cell growth. Neither GM3 nor GM1 had any affect on the binding of 125I-EGF to its cell surface receptor. However, GM3 and, to a much lower extent, GM1 were capable of inhibiting EGF-stimulated phosphorylation of the EGF receptor in membrane preparations of both KB and A431 cells. Further characterization of GM3-sensitive receptor phosphorylation was performed in A431 cells, which had a higher content of the EGF receptor. The following results were of particular interest. (i) EGF-dependent tyrosine phosphorylation of the EGF receptor and its inhibition by GM3 were also demonstrated on isolated EGF receptor after adsorption on the anti-receptor antibody-Sepharose complex, and the receptor phosphorylation was enhanced on addition of phosphatidylethanolamine. (ii) Phosphoamino acid analysis of the EGF receptor indicated that the reduction of phosphorylation induced by GM3 was entirely in the phosphotyrosine and not in the phosphoserine nor phosphothreonine content. (iii) The inhibitory effect of GM3 on EGF-dependent receptor phosphorylation could be reproduced in membranes isolated from A431 cells that had been cultured in medium containing 50 nmol/ml GM3 to effect cell growth inhibition. The membrane fraction isolated from such growth-arrested cells was found to be less responsive to EGF-stimulated receptor phosphorylation. These results suggest that membrane lipids, especially GM3, can modulate EGF receptor phosphorylation in vitro as well as in situ.  相似文献   

7.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

8.
Cholecystokinin-octapeptide (CCK8) inhibits 125I-labeled epidermal growth factor (EGF) cell-associated radioactivity in pancreatic acini, ostensibly as a result of its ability to mobilize cellular Ca2+. The phorbol ester tetradecanoyl phorbol acetate (TPA), a compound that activates protein kinase C, mimics the inhibitory action of CCK8. In the present study we examined the relationship between occupancy of the cholecystokinin (CCK) receptor, the subsequent inhibition of EGF binding, and the potential role of C-kinase activation in mediating this inhibition. Proglumide and dibutyryl cyclic GMP (dbGMP), two distinct competitive antagonists of CCK8, reversed the inhibitory actions of CCK8. Analysis of steady-state saturation kinetics of 125I-EGF binding indicated that CCK8 decreased the apparent affinity of the EGF receptor, mainly as a result of a marked decrease in the amount of internalized ligand. TPA also inhibited 125I-EGF internalization. Removal of CCK8 and TPA from incubation medium did not abolish their inhibitory actions. Carbachol, but not bombesin, exerted a similar residual inhibitory effect. It is suggested that in addition to acting via Ca2+, certain pancreatic secretagogues may also act through C-kinase to regulate EGF binding.  相似文献   

9.
Treatment of A431 human epidermoid carcinoma cells with 4-phorbol 12-myristate 13-acetate (PMA) causes an inhibition of the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an inhibition of the EGF receptor tyrosine protein kinase activity. The hypothesis that PMA controls EGF receptor function by regulating the oligomeric state of the receptor was tested. Dimeric EGF receptors bound to 125I-EGF were identified by covalent cross-linking analysis using disuccinimidyl suberimidate. Treatment of cells with PMA in the presence of 20 nM 125I-EGF caused no significant change in the level of labeled cross-linked monomeric and dimeric receptor species. Investigation of the in vitro autophosphorylation of receptor monomers and dimers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide demonstrated that the treatment of cells with PMA caused an inhibition of the tyrosine phosphorylation of both monomeric and dimeric EGF receptors. We conclude that the inhibition of the EGF receptor tyrosine protein kinase activity caused by PMA is not associated with the regulation of the oligomeric state of the EGF receptor.  相似文献   

10.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

11.
J C Fearn  A C King 《Cell》1985,40(4):991-1000
Phorbol esters specifically reduce the binding of epidermal growth factor to surface receptors in intact cells, but not when added directly to isolated membranes. We show that after treatment of intact cells with phorbol myristate acetate, 125I-EGF binding is reduced in membranes prepared subsequently. High-affinity binding of 125I-EGF is modulated by an intracellular calcium-dependent regulatory process. Preventing calcium entry with EGTA or enhancing intracellular calcium with A23187 in intact cells modulates EGF receptor affinity in membranes isolated subsequently. Also, EGTA attenuates the usual inhibition of EGF binding caused by phorbol esters. Membrane preparations do not respond to phorbol ester treatment because the calcium- and phospholipid-dependent protein kinase C is removed or inactivated during membrane isolation. Reconstitution of unresponsive membranes with purified C kinase alters phosphorylation of the EGF receptor and restores the inhibitory effect of phorbol esters on 125I-EGF binding previously observed only in intact cells. Thus, activation of the Ca++-dependent enzyme, C kinase, modulates EGF receptor affinity, possibly via altered receptor phosphorylation.  相似文献   

12.
Addition of EGF to A431 cells at physiological concentrations causes a rapid three- to four-fold increase in the abundance of phosphotyrosine in cellular protein. The increase is essentially complete within 1 min and is maintained for several hours. No change in phosphotyrosine levels is found with fibroblast growth factor or insulin. Two phosphoproteins (molecular weights of 39 and 81 kd) containing phosphotyrosine appear de novo upon administration of EGF to A431 cells. The EGF receptor itself is a phosphoprotein containing phosphotyrosine as well as phosphoserine and phosphothreonine. Changes in the phosphorylation pattern of the EGF receptor are seen upon treatment of A431 cells with EGF. Increased phosphorylation of tyrosine is the most rapid response of cells to EGF known, and may play an important role in the biological effects of EGF.  相似文献   

13.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

14.
The present study compared the role of two protein kinase C (PK-C) activating agents, the phorbol ester phorbol-12-acetate-13-myristate (PMA) and the membrane-permeating diacylglycerol dioctanoyl-sn-glycerol (DiC8) in the activation of EL4/6.1 thymoma cells. These cells have been shown to express interleukin-2 receptors (IL-2R) upon stimulation with optimal amounts of PMA (10 ng/ml); also, suboptimal amounts of PMA (1 ng/ml) synergized with the Ca2+ ionophore ionomycin and recombinant interleukin-1 (rIL-1) (Lowenthal et al., 1986). Comparing PMA and DiC8 led to the following results: PMA at 10 ng/ml induced IL-2R; in contrast, DiC8 (30-3 micrograms/ml) alone was unable to induce IL-2R, although it did synergize with ionomycin (0.5 micrograms/ml) and rIL-1. Bihourly additions of DiC8 did not change this pattern. The addition of DiC8 together with rIL-2 also resulted in no IL-2R expression. Furthermore, DiC8 (10 micrograms/ml) effectively translocated PK-C. Therefore, the differences observed between PMA and DiC8 do not seem to be due to differences in metabolism or to an inability to translocate PK-C. Analysis of messenger (m) RNA produced in stimulated EL4/6.1 cells revealed that DiC8 was also unable to induce mRNA for IL-2R. Our data suggest that PMA, especially at "optimal" concentrations, might have effects that cannot be mimicked by diacylglycerol. Furthermore, it seems that the deficient activity of diacylglycerols can be compensated for by a Ca2+ ionophore and, depending on the cellular system, by further signals such as IL-1.  相似文献   

15.
The lipophilic immunomodulator MTP-PE is able to activate purified protein kinase C (PKC) by substituting phosphatidyl-serine (PS) or the synthetic diacylglycerol, DiC8, in the assay system. In addition, MTP-PE inhibited [3H]-phorbol-12, 13-dibutyrate ([3H]-PDBu) binding to PKC in a reconstituted receptor system as well as on intact cells (MCF-7). Furthermore, MTP-PE was also able to reduced the epidermal growth factor binding of MCF-7 cells to an extent similar to that found with DiC8 or PDBu. These data indicate that MTP-PE is able to compete for the phorbol ester binding site on PKC both in vivo and in vitro. The components of the MTP-PE molecule, MTP (muramyl-tripeptide) and PE (phosphatidylethanolamine) exerted only marginal effects on PKC activity, did not affect the phorbol ester binding of PKC and the EGF binding of intact MCF-7 cells. Our results suggest that only the complete molecule of the immunomodulator MTP-PE is able to interact with PKC.  相似文献   

16.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

17.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

18.
Cysteine-rich domains (Cys-domains) are ~50–amino acid–long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-γ (Cys1–GFP). Strikingly, stimulation of G-protein or tyrosine kinase–coupled receptors induced a transient translocation of cytosolic Cys1–GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1–GFP in the membrane, whereas DiC8 left Cys1–GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1–GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-γ also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2–GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester–mediated translocation of proteins to selective lipid membranes.  相似文献   

19.
In this study we report that phorbol 12-myristate 13-acetate (PMA) transiently reduced the level of EGF receptor tyrosine phosphorylation in three pancreatic cancer cell lines (HPAC, SW1990, and UCVA-1) in response to EGF. The effect was maximal at 40-90 min. Pretreatment with the protein kinase C inhibitor GF 109203X reduced the PMA effect. Flow cytometry experiments showed that PMA produced only a slight reduction in the surface expression of EGF-R. The phosphotyrosine phosphatase inhibitor bpV(phen) returned phosphorylation to almost control levels. Moreover, homogenates of PMA treated pancreatic cells reduced the phosphorylation of activated receptor that was immunoprecipitated from A431 epidermoid cells. A combination of orthovanadate and NaF or bpV(phen) inhibited the effect of the homogenates. These results suggest that PMA activates a phosphotyrosine phosphatase activity that reduces the steady-state level of tyrosine phosphorylation of the receptor that is induced by EGF.  相似文献   

20.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号