首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of resveratrol (trans-3,4',5-trihydroxystilbene) on the oxidative stress in blood platelets induced by platinum compounds [cisplatin and selenium-cisplatin conjugate] were studied in vitro. The production of thiobarbituric acid reactive substances (TBARS), the level of conjugate diene, the generation of superoxide anion radicals (O2-*) and other reactive oxygen species (O2-*, H2O2, singlet oxygen and organic radicals) were measured by chemiluminescence in blood platelets treated with platinum compounds. Cisplatin at the concentration of 10 microg/ml, as well as selenium-cisplatin conjugate (10 microg/ml) induced oxidative stress in blood platelets: an increase in TBARS, conjugate diene, chemiluminescence and generation of O2-*. In the presence of resveratrol (a natural compound with antioxidant activity) at the concentrations of 1-25 microg/ml, the chemiluminescence, the levels of O2-*, conjugate diene and TBARS were reduced (p < 0.05). We showed that resveratrol at different concentrations (1-25 microg/ml) had a protective effect against oxidative stress in platelets caused by platinum compounds (10 microg/ml) and it diminished platelet lipid peroxidation and reactive oxygen species generation induced by platinum compounds.  相似文献   

2.
Free radical scavenging and antioxidant activities of a standardized extract of Hypericum perforatum (SHP) were examined for inhibition of lipid peroxidation, for hydroxyl radical scavenging activity and interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH). Concentrations between 1 and 50 microg/ml of SHP effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe2+/ascorbate or NADPH system. The results showed that SHP scavenged DPPH radical in a dose-dependent manner and also presented inhibitory effects on the activity of xanthine oxidase. In contrast, hydroxyl radical scavenging occurs at high doses. The protective effect of the standardized extract against H2O2-induced oxidative damage on the pheochromocytoma cell line PC 12 was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays, caspase-3-enzyme activity and accumulation of reactive oxygen species [2',7'-dichlorofluorescin (DCF) assay]. Following 8-h cell exposure to H2O2 (300 microM), a marked reduction in cell survival was observed, which was significantly prevented by SHP (pre-incubated for 24 h) at 1-100 microg/ml. In a separate experiment, different concentrations of the standardized extract (0.1-100 microg/ml) also attenuated the increase in caspase-3 activity and suppressed the H2O2 -induced reactive oxygen species generation. Taken together, these results suggest that SHP shows relevant antioxidant activity both in vitro and in a cell system, by means of inhibiting free radical generation and lipid peroxidation.  相似文献   

3.
神经元缺氧复氧损伤时氧自由基的毒性作用及其机制   总被引:3,自引:0,他引:3  
在原代分离培养Wistar乳鼠大脑皮质神经元上研究了缺氧复氧损伤(H/R)对神经细胞乳酸脱氢酶(LDH),漏出率,死亡率和脂质过氧化物含量的影响,并选用一氧化氮(NO)合酶抑制剂L-NG-硝基-精氨酸(L-NNA)巯基供体N-乙酰半胱氨酸(NAC)和超氧化物歧化酶(Cu,Zn-SOD)三种自由基清除剂进行预保护等方法来探讨机制。结果表明 H/R损伤引起LDH漏出率,细胞死亡率和脂过氧化物含量极显著  相似文献   

4.
This study was performed to investigate the role of reactive oxygen species and inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) metabolites in the lipopolysaccharide effect on bradykinin-induced relaxation in middle cerebral arteries from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). LPS exposure (10 microg/ml for 1-5 h) reduced bradykinin relaxation; this effect appeared earlier and was greater in arteries from SHR than WKY rats. LPS also reduced the relaxation to the NO donor diethylamine (DEA)-NO; however, LPS modified neither the bradykinin relaxation after inhibiting NO synthesis with N(G)-monomethyl-L-arginine (0.1 mM) nor endothelial NOS expression. In arteries from WKY rats, the respective iNOS and COX-2 inhibitors aminoguanidine (0.1 mM) and NS-398 (10 microM) and the superoxide anion scavenger SOD (100 U/ml) reduced the LPS effect on bradykinin relaxation; however, the thromboxane A(2) (TxA(2))PGH(2) receptor antagonist SQ-29548 (1 microM) and the H(2)O(2) scavenger catalase (1,000 U/ml) did not modify the LPS effect. In arteries from SHR, all of these drugs reduced the LPS effect. LPS exposure (5 h) increased superoxide anion levels in arteries from both strains and TxA(2) levels only in SHR. COX-2 expression rose to a similar level in arteries from both strains after 1 and 5 h of LPS incubation, whereas expression of Cu/Zn- and Mn-SOD only increased after 5 h. In conclusion, in segments from WKY rats, LPS reduced bradykinin-induced relaxation through increased production of NO (from iNOS) and superoxide anion. The greater LPS effect observed in arteries from SHR seems to be related to higher participation of reactive oxygen species and contractile prostanoids (probably TxA(2)).  相似文献   

5.
Maresin 1 is a novel pro-resolving mediator derived from docosahexaenoic acid (DHA), with potent anti-inflammation effects against several animal models, including brain ischemia, sepsis, and lung fibrosis. However, its effect against motor neuron cell death is still not investigated. Therefore, we investigated the effects of maresin 1 on several stress-induced motor neuron cell death. Maresin 1 suppressed combinatorial stress which was evoked by superoxide dismutase 1 (SOD1)G93A and serum-free, -induced motor neuron cells death in a concentration-dependent manner, and had a stronger neuroprotective effective than DHA. Maresin 1 also had neuroprotective effects against transactivation response DNA-binding protein (TDP)-43A315T and serum-free stress, H2O2, and tunicamycin-induced cell death. Maresin 1 reduced the reactive oxygen species (ROS) production caused by SOD1G93A or TDP-43A315T. Moreover, maresin 1 suppressed the NF-κB activation induced by SOD1G93A and serum-free stress. These data indicate that maresin 1 has motor neuron protective effects against several stresses by reduction of ROS production or attenuation of the NF-κB activation. Maresin 1 also had neuroprotective effects against H2O2, and tunicamycin-induced cell death in a concentration-dependent manner. Finally, maresin 1 ameliorated the motor function deficits of spinal muscular atrophy model in which endoplasmic reticulum stress was upregulated. Thus, maresin 1 may be beneficial to protect against motor neuron diseases.  相似文献   

6.
7.
8.
Koo BS  Lee WC  Chung KH  Ko JH  Kim CH 《Life sciences》2004,75(19):2363-2375
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury.  相似文献   

9.
Oxidative stress and mitochondrial injury has been implicated in cadmium-induced apoptosis. In this study, we examined the protective effect of diallyl tetrasulfide from garlic on cadmium induced oxidative stress and apoptosis in vero cells. Exposure of vero cells to cadmium (10 microM) for 18 h showed the apoptotic events such as loss of cell viability, alterations in nuclear morphology and decreased mitochondrial membrane potential with significantly increased levels of reactive oxygen species (super oxide anion and hydrogen peroxide). Treatment of vero cells with cadmium (10 microM) and diallyl tetrasulfide (5-50 microg/ml) showed that diallyl tetrasulfide attenuated the cadmium-induced suppression of cell viability in a dose dependent manner and highly significant effect was observed at 40 microg/ml. The nuclei morphological analysis with 4',6-diamidino-2-phenylindole staining confirmed that diallyl tetrasulfide at 40 microg/ml prevented the Cd (10 microM) induced apoptosis. Flow cytometric analysis with 2',7'-dichlorofluorencein diacetate showed that the inhibitory effect of diallyl tetrasulfide (10-40 microg/ml) on reactive oxygen species generation parallel with its effect on cell viability. In addition, diallyl tetrasulfide (40 microg/ml) remarkably reduced the cadmium-induced accumulation of superoxide radical and hydrogen peroxide with in cells. Further, diallyl tetrasulfide significantly protected the cadmium-induced decrease in mitochondrial membrane potential, an indicator of mitochondrial function. Our study suggest that diallyl tetrasulfide affect the reactive oxygen species generation induced by cadmium, and possesses a novel protective effect on the cytolethality associated with mitochondrial injury, which contributes to the antiapoptotic effect of diallyl tetrasulfide against cadmium.  相似文献   

10.
An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. beta-1,3- Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.  相似文献   

11.
Inhibition of oxidative stress has been reported to be involved in the cardioprotective effects of hydrogen sulfide (H(2)S) during ischemia/reperfusion (I/R). However, the mechanism whereby H(2)S regulates the level of cardiac reactive oxygen species (ROS) during I/R remains unclear. Therefore, we investigated the effects of H(2)S on pathways that generate and scavenge ROS. Our results show that pretreating rat neonatal cardiomyocytes with NaHS, a H(2)S donor, reduced the levels of ROS during the hypoxia/reoxygenation (H/R) condition. We found that H(2)S inhibited mitochondrial complex IV activity and increased the activities of superoxide dismutases (SODs), including Mn-SOD and CuZn-SOD. Further studies indicated that H(2)S up-regulated the expression of Mn-SOD but not CuZn-SOD. Using a cell-free system, we showed that H(2)S activates CuZn-SOD. An isothermal titration calorimetry (ITC) analysis indicated that H(2)S directly interacts with CuZn-SOD. Taken together, H(2)S inhibits mitochondrial complex IV and activates SOD to decrease the levels of ROS in cardiomyocytes during I/R.  相似文献   

12.
Beyond nutrition effect, quercetin is applied as a complement or an alternative for promoting human health and treating diseases. However, its complicated neuroprotective mechanisms have not yet been fully elucidated. This study provides evidence of an alternative target for quercetin, and sheds light on the mechanisms of its neuroprotection against cerebral ischemia/reperfusion (I/R) injury in Sprague–Dawley rats. Oral pretreatment using quercetin has alleviated cerebral I/R-induced neurological deficits, brain infarction, blood–brain barrier disruption, oxidative stress, TNF-α and IL-1β mRNA expression, along with apoptotic caspase 3 activity. The neuroprotective, anti-oxidative, anti-inflammatory, and anti-apoptotic effects of quercetin were replicated in rat hippocampal slice cultures and neuron/glia cultures which suffered from oxygen–glucose deprivation and reoxygenation (OGDR). Biochemical studies revealed a reduction of extracellular signal-regulated kinase (ERK) and Akt phosphorylation, along with an increase in protein tyrosine and serine/threonine phosphatase activity in cerebral I/R rat cortical tissues and OGDR hippocampal slice and neuron/glia cultures. Quercetin alleviated the changes in ERK/Akt phosphorylation and protein phosphatase activities. Inhibition of ERK or Akt alone was enough to cause apoptotic cell death and cytotoxicity in hippocampal slice cultures and neuron/glia cultures, while activators of ERK or Akt alleviated OGDR-induced cytotoxicity. Taken together, our results demonstrate that quercetin alleviated the increment of protein tyrosine and serine/threonine phosphatase activity, along with the reduction of ERK and Akt phosphorylation, which may play pivotal roles in the expansion of brain injury after cerebral I/R.  相似文献   

13.
Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma.  相似文献   

14.
The absolute stereochemistry of the new antifungal and antibacterial antibiotic produced by Streptomyces sp.201 has been established by achieving the total synthesis of the product. A series of analogues have also been synthesized by changing the side chain and their bioactivity assessed against different microbial strains. Among them, 1e (R = C8H17) was found to be the most potent with MIC of 8 microg/mL against Mycobacterium tuberculosis, 12 microg/mL against Escherichia coli and 16 microg/mL against Bacillus subtilis 6 microg/mL against Proteus vulgaris. This was followed by 1b (R = C5H11) with MIC of 10-20 microg/mL range and 1d (R = C7H15) with MIC of 14-24 g/mL, whereas 1a (R = C4H9) and 1f (R = C18H35) were found to be completely inactive. Besides, 1c (R = C6H13) showed certain extent of antibacterial activity in the range of 24-50 microg/mL. Mycobacterium tuberculosis was very sensitive to 1e (R = C8H17) with MIC of 8 microg/mL. Antifungal activity of analogues 1d (R = C7H15) and 1e, (R = C8H17) against Fusarium oxysporum and Rhizoctonia solani were found promising with MFCs in the 15-18 microg/mL range.  相似文献   

15.
16.
BackgroundNeuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet.PurposeThe present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons.MethodsAfter H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2′,7′–dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)−4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST.ResultPre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding.ConclusionCollectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.  相似文献   

17.
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP‐ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP‐ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP‐ribose) polymerase inhibition suppressed H/R‐induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R‐treated cells. Poly(ADP‐ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R‐induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP‐ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R‐induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.  相似文献   

18.
Manganese superoxide dismutase (Mn-SOD) is a naturally-occurring scavenger of superoxide, one of several reactive oxygen intermediates. To determine if Mn-SOD expression is enhanced as a defensive mechanism against oxidative challenges, such as intense light exposure, rats were exposed to cyclic light (80lux) for 2 weeks, intense light (1,800lux) for 24h, and then again to cyclic light. Experimental and control (exposed to cyclic light only) eyes were enucleated 3h, 1, 3, 7, and 14 days after light challenge. Protein expression was examined immunohistochemically using rabbit antisera against rat Mn-SOD. There was no significant difference between the light-exposed and the control groups in the thickness of the outer nuclear layers. Both retinal pigment epithelial cells and photoreceptor inner segments in the normal retina were labeled for Mn-SOD. Mn-SOD labeling was lost 3h and day 1 after light challenge. It was re-expressed in the retinal pigment epithelial cells 3, 7, and 14 days after the light challenge, and in the photoreceptor inner segments after day 14. These results suggest that the retina might have a protective potential against light damage, in which Mn-SOD may play an important role.  相似文献   

19.
Nicotinamide (vitamin B3) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p<0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B3 reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos andzif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.  相似文献   

20.
Intermedin (IMD)(1-53) is a novel member of the calcitonin gene-related peptide superfamily and has potent cardioprotective effects against myocardial injury induced by ischemia-reperfusion (I/R). To explore the mechanism of the IMD(1-53) cardioprotective effect, we studied the anti-oxidant effects of IMD(1-53) on myocardial injury induced by I/R in vivo in rat and H(2)O(2) treatment in vitro in rat cardiomyocytes. Compared with sham treatment, I/R treatment induced severe lipid peroxidation injury in rat myocardium: plasma malondialdehyde (MDA) content and myocardial LDH activity was increased by 34% and 85% (all P<0.01); Mn-superoxide dismutase (Mn-SOD) and catalase (CAT) activity was reduced 80% and 86% (all P<0.01), respectively, and the protein levels of the NADPH oxidase complex subunits gp91(phox) and p47(phox) were markedly increased, by 86% (P<0.05) and 95% (P<0.01), respectively; IMD(1-53) treatment ameliorated lipid peroxidation injury: plasma MDA content and myocardial LDH activity was decreased by 30% (P<0.05) and 36% (P<0.01); Mn-SOD and CAT activity was elevated 1.0- and 4.3-fold (all P<0.01), respectively; and the protein levels of gp91(phox) and p47(phox) were reduced, by 28% and 36% (both P<0.05), respectively. Concurrently, IMD(1-53) treatment markedly promoted cell viability and inhibited apoptosis in cardiomyocytes as compared with H(2)O(2) treatment alone. Furthermore, IMD(1-53) increased the ratio of p-ERK to ERK by 66% (P<0.05) as compared with I/R alone, and the protective effect of IMD(1-53) on H(2)O(2)-induced apoptosis was abolished by preincubation with PD98059, a MEK inhibitor. IMD(1-53) may improve the oxidative stress injury induced by I/R via inhibiting the production of reactive oxygen species and enhancing ERK phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号