首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial reactive oxygen species and Ca2+ signaling   总被引:1,自引:0,他引:1  
Mitochondria are an important source of reactive oxygen species (ROS) formed as a side product of oxidative phosphorylation. The main sites of oxidant production are complex I and complex III, where electrons flowing from reduced substrates are occasionally transferred to oxygen to form superoxide anion and derived products. These highly reactive compounds have a well-known role in pathological states and in some cellular responses. However, although their link with Ca2+ is well studied in cell death, it has been hardly investigated in normal cytosolic calcium concentration ([Ca2+]i) signals. Several Ca2+ transport systems are modulated by oxidation. Oxidation increases the activity of inositol 1,4,5-trisphosphate and ryanodine receptors, the main channels releasing Ca2+ from intracellular stores in response to cellular stimulation. On the other hand, mitochondria are known to control [Ca2+]i signals by Ca2+ uptake and release during cytosolic calcium mobilization, specially in mitochondria situated close to Ca2+ release channels. Mitochondrial inhibitors modify calcium signals in numerous cell types, including oscillations evoked by physiological stimulus. Although these inhibitors reduce mitochondrial Ca2+ uptake, they also impair ROS production in several systems. In keeping with this effect, recent reports show that antioxidants or oxidant scavengers also inhibit physiological calcium signals. Furthermore, there is evidence that mitochondria generate ROS in response to cell stimulation, an effect suppressed by mitochondrial inhibitors that simultaneously block [Ca2+]i signals. Together, the data reviewed here indicate that Ca2+-mobilizing stimulus generates mitochondrial ROS, which, in turn, facilitate [Ca2+]i signals, a new aspect in the biology of mitochondria. Finally, the potential implications for biological modeling are discussed. mitochondria; calcium  相似文献   

2.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

3.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

4.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

5.
Among the numerous effects of lithium on intracellular targets, its possible action on mitochondria remains poorly explored. In the experiments with suspension of isolated brain mitochondria, replacement of KCl by LiCl suppressed mitochondrial swelling, depolarization, and a release of cytochrome c induced by a single Ca2+ bolus. Li+ robustly protected individual brain mitochondria loaded with rhodamine 123 against Ca2+-induced depolarization. In the experiments with slow calcium infusion, replacement of KCl by LiCl in the incubation medium increased resilience of synaptic and nonsynaptic brain mitochondria as well as resilience of liver and heart mitochondria to the deleterious effect of Ca2+. In LiCl medium, mitochondria accumulated larger amounts of Ca2+ before they lost the ability to sequester Ca2+. However, lithium appeared to be ineffective if mitochondria were challenged by Sr2+ instead of Ca2+. Cyclosporin A, sanglifehrin A, and Mg2+, inhibitors of the mitochondrial permeability transition (mPT), increased mitochondrial Ca2+ capacity in KCl medium but failed to do so in LiCl medium. This suggests that the mPT might be a common target for Li+ and mPT inhibitors. In addition, lithium protected mitochondria against high Ca2+ in the presence of ATP, where cyclosporin A was reported to be ineffective. SB216763 and SB415286, inhibitors of glycogen synthase kinase-3beta, which is implicated in regulating reactive oxygen species-induced mPT in cardiac mitochondria, did not increase Ca2+ capacity of brain mitochondria. Altogether, these findings suggest that Li+ desensitizes mitochondria to elevated Ca2+ and diminishes cytochrome c release from brain mitochondria by antagonizing the Ca2+-induced mPT.  相似文献   

6.
Changes in mitochondrial integrity, reactive oxygen species release and Ca2+ handling are proposed to be involved in the pathogenesis of many neurological disorders including methylmalonic acidaemia and Huntington's disease, which exhibit partial mitochondrial respiratory inhibition. In this report, we studied the mechanisms by which the respiratory chain complex II inhibitors malonate, methylmalonate and 3-nitropropionate affect rat brain mitochondrial function and neuronal survival. All three compounds, at concentrations which inhibit respiration by 50%, induced mitochondrial inner membrane permeabilization when in the presence of micromolar Ca2+ concentrations. ADP, cyclosporin A and catalase prevented or delayed this effect, indicating it is mediated by reactive oxygen species and mitochondrial permeability transition (PT). PT induced by malonate was also present in mitochondria isolated from liver and kidney, but required more significant respiratory inhibition. In brain, PT promoted by complex II inhibition was stimulated by increasing Ca2+ cycling and absent when mitochondria were pre-loaded with Ca2+ or when Ca2+ uptake was prevented. In addition to isolated mitochondria, we determined the effect of methylmalonate on cultured PC12 cells and freshly prepared rat brain slices. Methylmalonate promoted cell death in striatal slices and PC12 cells, in a manner attenuated by cyclosporin A and bongkrekate, and unrelated to impairment of energy metabolism. We propose that under conditions in which mitochondrial complex II is partially inhibited in the CNS, neuronal cell death involves the induction of PT.  相似文献   

7.
New live-cell imaging techniques indicate that mitochondria exist in the living cell as a continuous interconnected mitochondrial reticulum, or 'MR', closely associated with the endoplasmic reticulum (ER). Ca2+ ions released from the ER in response to hormonal stimulation might thus be preferentially transferred into the mitochondrial matrix causing the local activation of ATP synthesis. Ca2+ uptake into the MR might also subtly modify the activity of ER Ca2+ release channels and thus the dynamics of cytosolic Ca2+ oscillations and waves.  相似文献   

8.
Local Ca(2+) transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca(2+) release to activate mitochondrial Ca(2+) uptake and to evoke a matrix [Ca(2+)] ([Ca(2+)](m)) rise. [Ca(2+)](m) exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca(2+) release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca(2+) sensitivity of both the Ca(2+) release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca(2+) accumulation in various apoptotic paradigms, methods are available for buffering of [Ca(2+)], for dissipation of the driving force of the mitochondrial Ca(2+) uptake and for inhibition of the mitochondrial Ca(2+) transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca(2+) handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca(2+) uptake on cytosolic [Ca(2+)] and [Ca(2+)](m) in intact cultured cells.  相似文献   

9.
The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.  相似文献   

10.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   

11.
12.
13.
We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.  相似文献   

14.
Mitochondria have been found to sequester and release Ca2+ during cell stimulation with inositol 1,4,5-triphosphate-generating agonists, thereby generating subplasmalemmal microdomains of low Ca2+ that sustain activity of capacitative Ca2+ entry (CCE). Procedures that prevent mitochondrial Ca2+ uptake inhibit local Ca2+ buffering and CCE, but it is not clear whether Ca2+ has to transit through or remains trapped in the mitochondria. Thus, we analyzed the contribution of mitochondrial Ca2+ efflux on the ability of mitochondria to buffer subplasmalemmal Ca2+, to maintain CCE, and to facilitate endoplasmic reticulum (ER) refilling in endothelial cells. Upon the addition of histamine, the initial mitochondrial Ca2+ transient, monitored with ratio-metric-pericam-mitochondria, was largely independent of extracellular Ca2+. However, subsequent removal of extracellular Ca2+ produced a reversible decrease in [Ca2+]mito, indicating that Ca2+ was continuously taken up and released by mitochondria, although [Ca2+]mito had returned to basal levels. Accordingly, inhibition of the mitochondrial Na+/Ca2+ exchanger with CGP 37157 increased [Ca2+]mito and abolished the ability of mitochondria to buffer subplasmalemmal Ca2+, resulting in an increased activity of BKCa channels and a decrease in CCE. Hence, CGP 37157 also reversibly inhibited ER refilling during cell stimulation. These effects of CGP 37157 were mimicked if mitochondrial Ca2+ uptake was prevented with oligomycin/antimycin A. Thus, during cell stimulation a continuous Ca2+ flux through mitochondria underlies the ability of mitochondria to generate subplasmalemmal microdomains of low Ca2+, to facilitate CCE, and to relay Ca2+ from the plasma membrane to the ER.  相似文献   

15.
Long-lasting mitochondrial permeability transition pore (mPTP) openings damage mitochondria, but transient mPTP openings protect against chronic cardiac stress. To probe the mechanism, we subjected isolated cardiac mitochondria to gradual Ca(2+) loading, which, in the absence of BSA, induced long-lasting mPTP opening, causing matrix depolarization. However, with BSA present to mimic cytoplasmic fatty acid-binding proteins, the mitochondrial population remained polarized and functional, even after matrix Ca(2+) release caused an extramitochondrial free [Ca(2+)] increase to >10 μM, unless mPTP openings were inhibited. These findings could be explained by asynchronous transient mPTP openings allowing individual mitochondria to depolarize long enough to flush accumulated matrix Ca(2+) and then to repolarize rapidly after pore closure. Because subsequent matrix Ca(2+) reuptake via the Ca(2+) uniporter is estimated to be >100-fold slower than matrix Ca(2+) release via mPTP, only a tiny fraction of mitochondria (<1%) are depolarized at any given time. Our results show that transient mPTP openings allow cardiac mitochondria to defend themselves collectively against elevated cytoplasmic Ca(2+) levels as long as respiratory chain activity is able to balance proton influx with proton pumping. We found that transient mPTP openings also stimulated reactive oxygen species production, which may engage reactive oxygen species-dependent cardioprotective signaling.  相似文献   

16.
17.
The response of the steady-state level of mitochondrial NAD(P)H of individual cardiac myocytes to substrate and to pharmacological alteration of intracellular calcium was investigated using a defined pacing protocol. Rapid pacing (5 Hz) reversibly decreased the NAD(P)H level and increased oxygen consumption whereas phosphocreatine and ATP levels did not change significantly. Verapamil plus NiCl2 blockade of calcium channels abolished contractions. Ryanodine, which prevents calcium-induced calcium release, also stopped cell contraction. NAD(P)H levels do not change in the absence of contraction. Blockade of sarcolemmal K+ channels did not stop contraction, and NAD(P)H levels reversibly decreased during rapid pacing. Thus rapid contractions are associated with a reversible decrease in NAD(P)H levels. Ruthenium red blockade of Ca2+ entry into mitochondria did not block contraction but significantly decreased NAD(P)H levels in both slowly paced (0.5 Hz) and rapidly paced cells. The simplest explanation of these data is that the steady-state reduction of NAD(P)H is strongly dependent on the rate of ATP utilization and not on sarcoplasmic Ca2+ levels when the oxygen and substrate supplies are not limiting and the intracellular calcium regulation is maintained. An effect of intracellular Ca2+ on NAD(P)H is observed only when Ca2+ entry into mitochondria is blocked with ruthenium red.  相似文献   

18.
At high K+ concentration, the effect of phosphate on Ca2+ uptake and release was studied in isolated rat liver mitochondria. Phosphate stimulated uptake at moderately high Ca2+ concentration, and inhibited release at high pH. At low pH, phosphate accelerated Ca2+ release. Ca2+ was released after a lag phase. The time of onset and the velocity of Ca2+ release depended on Ca2+ concentration. Ca2+ release was associated with mitochondrial swelling and destruction of the permeability barrier for sucrose and for chloride. Mg2+ inhibited Ca2+ release and the accompanying events. Ruthenium red and EGTA protected mitochondria from the destructive Ca2+ release and induced an immediate, slow release of Ca2+ and phosphate. Destructive Ca2+ release depended on the time of preincubation of respiration-inhibited mitochondria in the presence of Ca2+, prior to respiration-initiated Ca2+ uptake. The presence of phosphate and mitochondrial energization antagonized the destructive effect of calcium ions. Ca2+ release by acetoacetate also depended on pH. At pH 6.8, phosphate-stimulated Ca2+ release by acetoacetate, while it inhibited the acetoacetate effect at pH 7.6. The results suggest that an essential cause for the destruction of mitochondrial integrity is an increase in the intramitochondrial concentration of free calcium ions under the influence of phosphate.  相似文献   

19.
Mitochondrial Ca2+ and the heart   总被引:2,自引:0,他引:2  
It is now well established that mitochondria accumulate Ca(2+) ions during cytosolic Ca(2+) ([Ca(2+)](i)) elevations in a variety of cell types including cardiomyocytes. Elevations in intramitochondrial Ca(2+) ([Ca(2+)](m)) activate several key enzymes in the mitochondrial matrix to enhance ATP production, alter the spatial and temporal profile of intracellular Ca(2+) signaling, and play an important role in the initiation of cell death pathways. Moreover, mitochondrial Ca(2+) uptake stimulates nitric oxide (NO) production by mitochondria, which modulates oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and in turn provides negative feedback for the regulation of mitochondrial Ca(2+) accumulation. Controversy remains, however, whether in cardiac myocytes mitochondrial Ca(2+) transport mechanisms allow beat-to-beat transmission of fast cytosolic [Ca(2+)](i) oscillations into oscillatory changes in mitochondrial matrix [Ca(2+)](m). This review critically summarizes the recent experimental work in this field.  相似文献   

20.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号