首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.  相似文献   

2.
To image the possible alterations in brain regional GABAA receptor subtype properties in a genetic animal model of human anxiety, mice heterozygous for the deletion of GABAA receptor gamma2 subunit (gamma2+/-) were studied using ligand autoradiographic assays on brain cryostat sections. The [35S]TBPS binding assay was designed to reveal impaired GABA and channel site coupling shown to be more prominent in recombinant alpha1/6beta3 than in alpha1/2beta3gamma2 or beta2 subunit-containing GABAA receptors expressed in HEK 293 cells. Increased GABA-insensitive [35 S]TBPS binding in the gamma2+/- mouse brains was evident in the cerebral cortex and in subcortical regions, the alterations being regionally similar to the loss of gamma2 subnunit-dependent benzodiazepine (BZ) sites as revealed by [3H]Ro 15-4513 autoradiography. As the gamma2 subunit protein is needed for synaptic clustering of GABAA receptors, these results indicate that the extrasynaptic alphabeta3 receptors can be visualized in vitro as atypical GABA-insensitive [35S]TBPS binding sites. The results suggest that GABAAergic synaptic inhibition is widely decreased in the brains of anxiety-prone gamma2+/- mice, while extrasynaptic GABAA receptors are increased. These autoradiographic imaging findings further demonstrate the need to develop GABAA receptor subtype-selective in vivo ligands to aid in assessing the contributions of various subcellular receptor populations in anxious and other patient groups.  相似文献   

3.
gamma-Aminobutyric acidA (GABAA) receptors are multisubunit ligand-gated ion channels which mediate neuronal inhibition by GABA and are composed of at least four subunit types (alpha, beta, gamma, and delta). The gamma 2-subunit appears to be essential for benzodiazepine modulation of GABAA receptor function. In cloning murine gamma 2-subunits, we isolated cDNAs encoding forms of the subunit that differ by the insertion of eight amino acids. LLRMFSFK, in the major intracellular loop between proposed transmembrane domains M3 and M4. The two forms of the gamma 2-subunit are generated by alternative splicing, as demonstrated by cloning and partial sequencing of the corresponding gene. The eight-amino-acid insertion encodes a potential consensus serine phosphorylation site for protein kinase C. These results suggest a novel mechanism for the regulation of the GABAA receptor by protein phosphorylation.  相似文献   

4.
Using a novel antibody directed against the alpha4 subunit of gamma-aminobutyric acidA (GABAA) receptors, 5% of all [3H]muscimol but only about 2% of all [3H]Ro15-4513 binding sites present in brain membrane extracts could be precipitated. This indicated that part of the alpha4 receptors containing [3H]muscimol binding sites did not contain [3H]Ro15-4513 binding sites. Immunoaffinity purification and Western blot analysis of alpha4 receptors demonstrated that not only alpha1, alpha2, alpha3, beta1, beta2, and beta3 subunits but also gamma1, gamma2, gamma3, and delta subunits can be colocalized with alpha4 subunits in native GABAA receptors. Quantification experiments, however, indicated that only 7, 33, 4, or 7% of all alpha4 receptors contained gamma1, gamma2, gamma3, or delta subunits, respectively. These data not only explain the low percentage of [3H]Ro15-4513 binding sites precipitated by the anti-alpha4 antibody but also indicate that approximately 50% of the alpha4 receptors did not contain gamma1, gamma2, gamma3, or delta subunits. These receptors, thus, either are composed of alpha4 and beta1-3 subunits only, or additionally contain epsilon, pi, or so far unidentified GABAA receptor subunits.  相似文献   

5.
Polyclonal antibodies were raised to synthetic amino acid sequences of the bovine GABAA receptor alpha 2- and alpha 3-subunits and purified by affinity chromatography on a column coupled with the respective peptide. Anti-peptide alpha 2(416-424) and anti-peptide alpha 3(459-467) antibodies immunoprecipitated GABAA receptors and recognized a protein of 53 kDa (P53) and 59 kDa (P59), respectively, in Western blots of GABAA receptors purified from the brains of 5-10 day old rats. P53 as well as P59 are specifically photolabeled by [3H]flunitrazepam and are recognized by the alpha-subunit specific monoclonal antibody bd 28.  相似文献   

6.
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. Compared with cells expressing wild-type and alpha1beta2gamma2(K289M) receptors, cells expressing alpha1(K278M)beta2gamma2 and alpha1beta2(K274M)gamma2 receptors exhibited reduced agonist-evoked current density and reduced GABA potency, with no change in single channel conductance. The low current density of alpha1beta2(K274M)gamma2 receptors coincided with reduced surface expression. By contrast the surface expression of alpha1(K278M)beta2gamma2 receptors was similar to wild-type and alpha1beta2gamma2(K289M) receptors suggesting that the alpha1(K278M) impairs function. In keeping with this interpretation GABA-activated channels mediated by alpha1(K278M)beta2gamma2 receptors had brief open times. To a lesser extent gamma2(K289M) also reduced mean open time, whereas beta2(K274M) had no effect. We used propofol as an alternative GABAA receptor agonist to test whether the functional deficits of mutant subunits were specific to GABA activation. Propofol was less potent as an activator of alpha1(K278M)beta2gamma2 receptors. By contrast, neither beta2(K274M) nor gamma2(K289M) affected the potency of propofol. The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.  相似文献   

7.
The unique cytoplasmic loop regions of the alpha 1, alpha 2, alpha 3, and alpha 5 subunits of the GABAA receptor were expressed in bacterial and used to produce subunit-specific polyclonal antisera. Antibodies immobilized on protein A-Sepharose were used to isolate naturally occurring alpha-specific populations of GABAA receptors from rat brain that retained the ability to bind [3H]muscimol, [3H]flunitrazepam, [3H]Ro15-1788, and [125I]iodo-clonazepam with high affinity. Pharmacological characterization of these subtypes revealed marked differences between the isolated receptor populations and was generally in agreement with the reported pharmacological profiles of GABAA receptors in cells transiently transfected with alpha 1 beta 1 gamma 2, alpha 2 beta 1 gamma 2, alpha 3 beta 1 gamma 2, and alpha 5 beta 1 gamma 2 combinations of subunits. Additional subtypes were also identified that bind [3H]muscimol but do not bind benzodiazepines with high affinity. The majority of GABAA receptor oligomers contains only a single type of alpha subunit, and we conclude that alpha 1, alpha 2, alpha 3, and alpha 5 subunits exist in vivo in combination with the beta subunit and gamma 2 subunit.  相似文献   

8.
A series of substituted 3,4-dihydronaphthalen-1(2H)-ones with high binding affinity for the benzodiazepine site of GABAA receptors containing the alpha5-subunit has been identified. These compounds have consistently higher binding affinity for the GABAA alpha5 receptor subtype over the other benzodiazepine-sensitive GABAA receptor subtypes (alpha1, alpha2 and alpha3). Compounds with a range of efficacies for the benzodiazepine site of alpha5-containing GABAA receptors were identified, including the alpha5 inverse agonist 3,3-dimethyl-8-methylthio-5-(pyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 22 and the alpha5 agonist 8-ethylthio-3-methyl-5-(1-oxidopyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 19.  相似文献   

9.
Previous suggestions (Hubert, J. J., Schenk, D. B., Skelly, H., and Leffert, H. L. (1986) Biochemistry 25, 4156-4163) of tissue-specific isoforms or nonexistence of hepatic Na,K-ATPase beta 1-subunits were reevaluated by quantifying beta 1-subunit mRNA levels in quiescent and proliferating liver. RNA was extracted from caudate liver lobes of sham or 67% hepatectomized adult rats and from primary cultures of adult rat hepatocytes that simulate developmental and regenerating growth transitions. Northern blot analysis with a 32P-labeled full-length Na,K-ATPase beta 1-cDNA probe (Mercer, R. W., Schneider, J. W., Savitz, A., Emmanuel, J., Benz, T.J., and Levenson, R. (1986) Mol. Cell. Biol. 6, 3884-3890) revealed four (approximately 2.7, 2.4, 1.7-1.8, and 1.5 kilobases) low abundance mRNA species in quiescent tissue, freshly isolated hepatocytes, and cultured hepatocytes derived from lag or late stationary phase (1-2 days or 11-12 days postplating, respectively). In contrast, proliferating liver from 4 h post-67% hepatectomized rats or cultured hepatocytes in logarithmic growth phase contained levels of beta 1-subunit mRNA which exceeded quiescent levels by 4-35-fold. Membrane Na,K-ATPase activity also increased 2-3-fold during liver regeneration 12-24 h after partial hepatectomy. When proliferation in vitro was augmented by transforming growth factor-alpha, a hepatocyte mitogen, or reinitiated in late stationary phase by a change to fresh culture medium containing rat serum, beta 1-subunit mRNA expression was restimulated 4-20-fold. Parallel measurements of alpha-tubulin mRNA induction showed relatively nonsynchronous or invariant changes during hepatocyte proliferative transitions; similar results were obtained after Northern blots with a sodium pump alpha I-subunit cDNA probe. No detectable hybridization signals were observed when either rat kidney or hepatocyte RNAs from freshly isolated and cultured cells or regenerating tissues were probed for the sodium pump 3.4-kilobase mRNA beta 2-isoform. These observations suggest that enhanced hepatic beta 1-subunit gene expression is linked specifically to growth-associated increases in Na,K-ATPase activity, hepatocyte proliferation, and mitogen activation.  相似文献   

10.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

11.
mAbs bd 17, bd 24, and bd 28 raised against bovine cerebral gamma-aminobutyric acid (GABAA)/benzodiazepine receptors were analyzed for their ability to detect each of 12 GABAA receptor subunits expressed in cultured mammalian cells. Results showed that mAb bd 17 recognizes epitopes on both beta 2 and beta 3 subunits while mAb bd 24 is selective for the alpha 1 subunit of human and bovine, but not of rat origin. The latter antibody reacts with the rat alpha 1 subunit carrying an engineered Leu at position four, documenting the first epitope mapping of a GABAA receptor subunit-specific mAb. In contrast to mAbs bd 17 and bd 24, mAb bd 28 reacts with all GABAA receptor subunits tested but not with a glycine receptor subunit, suggesting the presence of shared epitopes on subunits of GABA-gated chloride channels.  相似文献   

12.
Antibodies raised against the synthetic peptide NH2-QKSDDDYEDYASNKTC-COOH (gamma 2 1-15 Cys), which corresponds to the N-terminal amino acid sequence with a C-terminal cysteine of the human gamma 2 subunit of the gamma-aminobutyric acidA (GABAA) receptor, were used to study the quantitative immunoprecipitation of agonist benzodiazepine binding sites from bovine brain. Anti-gamma 2 1-15 Cys antibodies were found to immunoprecipitate specifically in parallel [3H]flunitrazepam- and [3H]muscimol-reversible binding sites in a dose-dependent manner. The maximum percentages of [3H]flunitrazepam binding sites immunoprecipitated from detergent extracts of bovine cerebral cortex, cerebellum, and hippocampus were 68, 77, and 83%, respectively. Immunoprecipitation studies with anti-alpha 1 324-341 antibodies carried out in parallel with anti-gamma 2 1-15 Cys antibodies provided evidence for the promiscuity of the gamma 2 subunit within native GABAA receptors. These results substantiate the association of the gamma 2 polypeptide with native GABAA receptors.  相似文献   

13.
We have recently identified and sequenced the cDNA for an opioid-binding protein with homologies to cell adhesion molecules (OBCAM) (Schofield, P. R., McFarlard, K. C., Hayflick, J. S., Wilcox, J. N., Cho, T. M., Roy, S., Lee, N. M., Loh, H. H., and Seeburg, P. H. (1989) EMBO J. 8, 489-495). Several lines of evidence using antibodies suggest that OBCAM may play a functional role in NG108-15 neuroblastoma x glioma cells, a useful model system that contains a homogeneous population of delta-opioid receptors. A logical extension of this research is to further test this hypothesis. As part of this study, NG108-15 cells were stably transfected with either sense or antisense sequences of a portion of pROM, the rat cDNA for OBCAM. [3H] Diprenorphine binding was greatly reduced in antisense-transfected cells relative to non-transfected cells. Binding to alpha 2-adrenergic, muscarinic, and insulin receptors was unaffected. These results further support the notion that OBCAM or its analogue is part (or a subunit) of an opioid receptor. Furthermore, our observation of an apparently specific reduction in opioid binding in these transfected cells suggests that they may provide a novel genetic approach for studying regulation of the opioid receptor in this defined cell line.  相似文献   

14.
Extracellular nucleotides activate P2Y receptors, thereby increasing cAMP formation in Madin-Darby canine kidney (MDCK-D(1)) cells, which express P2Y(1), P2Y(2), and P2Y(11) receptors (Post, S. R., Rump, L. C., Zambon, A., Hughes, R. J., Buda, M. D., Jacobson, J. P., Kao, C. C., and Insel, P. A. (1998) J. Biol. Chem. 273, 23093-23097). The cyclooxygenase inhibitor indomethacin (indo) eliminates UTP-promoted cAMP formation (i.e. via P2Y(2) receptors) but only partially blocks ATP-promoted cAMP formation. The latter response is completely blocked by the nonselective P2Y receptor antagonist suramin. We have sought to identify the mechanism for this P2Y receptor-mediated, indo-resistant cAMP formation. The agonist rank order potencies for cAMP formation were: ADP beta S > or = MT-ADP > 2-MT-ATP > ADP, ATP, ATP gamma S > UTP, AMP, adenosine. We found a similar rank order in MDCK-D(1) cells overexpressing cloned green fluorescent protein-tagged P2Y(11) receptors, but the potency of the agonists was enhanced, consistent with a P2Y(11) receptor-mediated effect. cAMP generation by the P2Y(1) and P2Y(11) receptor agonist ADP beta S was not inhibited by several P2Y(1)-selective antagonists (PPADS, A2P5P, and MRS 2179). Forskolin synergistically enhanced cAMP generation in response to ADP beta S or PGE(2), implying that, like PGE(2), ADP beta S activates adenylyl cyclase via G(s), a conclusion supported by results showing ADP beta S and MT-ADP promoted activation of adenylyl cyclase activity in MDCK-D(1) membranes. We conclude that nucleotide-promoted, indo-resistant cAMP formation in MDCK-D(1) cells occurs via G(s)-linked P2Y(11) receptors. These data describing adenylyl cyclase activity via endogenous P2Y(11) receptors define a mechanism by which released nucleotides can increase cAMP in MDCK-D(1) and other P2Y(11)-containing cells.  相似文献   

15.
Two of the gamma-aminobutyric acid (GABA) receptors, GABAA and GABAC, are ligand-gated chloride channels expressed by neurons in the retina and throughout the central nervous system. The different subunit composition of these two classes of GABA receptor result in very different physiological and pharmacological properties. Although little is known at the molecular level as to the subunit composition of any native GABA receptor, it is thought that GABAC receptors are homomeric assemblies of rho-subunits. However, we found that the kinetic and pharmacological properties of homomeric receptors formed by each of the rho-subunits cloned from perch retina did not resemble those of the GABAC receptors on perch bipolar cells. Because both GABAA and GABAC receptors are present on retinal bipolar cells, we attempted to determine whether subunits of these two receptor classes are capable of interacting with each other. We report here that, when coexpressed in Xenopus oocytes, heteromeric (rho 1B gamma 2) receptors formed by coassembly of the rho 1B-subunit with the gamma 2-subunit of the GABAA receptor displayed response properties very similar to those obtained with current recordings from bipolar cells. In addition to being unresponsive to bicuculline and diazepam, the time-constant of deactivation, and the sensitivities to GABA, picrotoxin and zinc closely approximated the values obtained from the native GABAC receptors on bipolar cells. These results provide the first direct evidence of interaction between GABA rho and GABAA receptor subunits. It seems highly likely that coassembly of GABAA and rho-subunits contributes to the molecular organization of GABAC receptors in the retina and perhaps throughout the nervous system.  相似文献   

16.
17.
A novel calcium-binding protein (molecular weight 23,000-24,000, pI 5.3-5.5), which we term neurocalcin, was identified in bovine brain. Using calcium-dependent drug affinity chromatography ((S)-P-(2-aminoethyloxy)-N-[2-(4-benzyloxycarbonylpiperazinyl++ +)-1-(P- methoxybenzyl)ethyl]-N-methylbenzene-sulfonamide dihydrochloride, W-77, -coupled Sepharose 6B), we purified neurocalcin from bovine brain. The partial amino acid sequence of neurocalcin revealed it to be an as yet unidentified protein with three putative calcium binding sites (EF-hands). Further purification and sequence analysis demonstrated the presence of four isoprotein forms designated alpha, beta, gamma 1, and gamma 2. When the 165 sequenced residues of neurocalcin beta are compared with sequences of other proteins, neurocalcin beta has a 38.2% sequence homology with visinin and 45.5% with recoverin (Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H., and Miki, N. (1990) Neuron 2, 469-476; Dizhoor, A. M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K. A., Philipov, P. P., Hurley, J. B., and Stryer, L. (1991) Science 251, 915-918). Both visinin and recoverin are expressed specifically in retinal photoreceptors and are not found in brain. Unlike visinin and recoverin, neurocalcin is purified not only from retina but also from bovine brain. Our results suggest that neurocalcin is a recoverin-like protein expressed in bovine brain.  相似文献   

18.
The kringle-2 domain of tissue plasminogen activator, cloned and expressed in Escherichia coli (Wilhelm, O.G., Jaskunas, S.R., Vlahos, C.J., and Bang, N.U. (1990) J. Biol. Chem. 265, 14606-14611), was internally radiolabeled using [35S]methionine-cysteine. Following refolding and isolation, the labeled polypeptide was further purified by reverse-phase high performance liquid chromatography. The purified kringle-2 domain was digested with thermolysin, and the resulting peptides were purified by high performance liquid chromatography. Five major peptides containing 35S were obtained. Amino acid sequence analysis showed that these peptides represented various cleavage products containing one or more of the following disulfides: Cys180-Cys261, Cys201-Cys243, Cys232-Cys256 (sequence numbering based on Pennica et al. (Pennica, D., Holmes, W.E., Kohr, W.J., Hakins, R.N., Vehar, G. A., Ward, C.A., Bennett, W.F., Yelverton E., Seeburg, P.H., Heynecker, H.L., Goeddel, E.V., and Collen, D. (1983) Nature 301, 214-221)). These results confirm that the refolding methodology used produced kringle-2 with the predicted disulfide linkage and, thus, yielded material suitable for structural and functional studies.  相似文献   

19.
A cDNA encoding a protein with 70% amino acid identity to the previously characterized gamma-aminobutyric acidA (GABAA) receptor alpha-subunits was isolated from a rat brain cDNA library by homology screening. As observed for alpha 1-, alpha 2-, and alpha 3-subunits, coexpression of this new alpha-subunit (alpha 5) with a beta- and gamma 2-subunit in cultured cells produces receptors displaying high-affinity binding sites for both muscimol, a GABA agonist, and benzodiazepines. Characteristic of GABAA/benzodiazepine type II sites, receptors containing alpha 2-, alpha 3- or alpha 5-subunits have low affinities for several type I-selective compounds. However, alpha 5-subunit-containing receptors have lower affinities for zolpidem (30-fold) and Cl 218 872 (three-fold) than measured previously using recombinantly expressed type II receptors containing either alpha 2- or alpha 3-subunits. Based on these findings, a reclassification of the GABAA/benzodiazepine receptors is warranted.  相似文献   

20.
The majority of fast inhibitory neurotransmission in the CNS is mediated by the GABA type-A (GABAA) receptor, a ligand-gated chloride channel. Of the approximately 20 different subunits composing the hetero-pentameric GABAA receptor, the gamma2 subunit in particular seems to be important in several aspects of GABAA receptor function, including clustering of the receptor at synapses. In this study, we report that the intracellular loop of the gamma2 subunit interacts with itself as well as with gamma1, gamma3 and beta1-3 subunits, but not with the alpha subunits. We further show that gamma2 subunits interact with photolabeled pentameric GABAA receptors composed of alpha1, beta2/3 and gamma2 subunits, and calculate the dissociation constant to be in the micromolar range. By using deletion constructs of the gamma2 subunit in a yeast two-hybrid assay, we identified a 23-amino acid motif that mediates self-association, residues 389-411. We confirmed this interaction motif by inhibiting the interaction in a glutathione-S-transferase pull-down assay by adding a corresponding gamma2-derived peptide. Using similar approaches, we identified the interaction motif in the gamma2 subunit mediating interaction with the beta2 subunit as a 47-amino acid motif that includes the gamma2 self-interacting motif. The identified gamma2 self-association motif is identical to the interaction motif reported between GABAA receptor and GABAA receptor-associated protein (GABARAP). We propose a model for GABAA receptor clustering based on GABARAP and GABAA receptor subunit-subunit interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号