首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract The galactophilic lectin of the bacterium Pseudomonas aeruginosa (PA-I) was used for mitogenic stimulation of peripheral bloodlymphocytes from cancer-bearing patients and healthy subjects. This lectin, which preferentially stimulates sialidase-treated lymphocytes, was shown to be useful in the detection of an impairment in the mitogenic response of the patients' lymphocytes. Its efficiency was at least as that of the Phaseolus vulgaris lectin (PHA), which is widely used for the diagnosis and prognosis of deficient immunocompetence states.  相似文献   

2.
Restriction endonucleases (13 out of 18 species used for the test) were certified to cleave single-stranded(ss)DNA. Such enzymes as AvaII, HaeII, DdeI, AluI, Sau3AI, AccII,TthHB8I and HapII were newly reported to cleave ssDNA. A model to account for the cleavage of ssDNA by restriction enzymes was proposed with supportive data. The essential part of the model was that restriction enzymes preferentially cleave transiently formed secondary structures (called canonical structures) in ssDNA composed of two recognition sequences with two fold rotational symmetry. This means that a restriction enzyme can cleave ssDNAs in general so far as the DNAs have the sequences of restriction sites for the enzyme, and that the rate of cleavage depends on the stabilities of canonical structures.  相似文献   

3.
Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10IE204Q. Detailed characterization of plasmids from 64 colonies screened from the library of ∼200 000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis.  相似文献   

4.
Type II restriction endonucleases are a paradigm for site-specific cleavage of DNA. Recent structural analyses, in particular in the presence of various divalent metals, have shed new insight into the mechanisms of catalysis. In addition, during this past year the crystal structure determinations of MutH, lambda-exonuclease and FokI have revealed that these proteins are also members of the same family.  相似文献   

5.
Two of thirteen bacillar strains isolated from the inner tissues of cotton plants were found to produce type II restriction endonucleases. The investigation of the site specificity of these enzymes showed that they are AsuI and Eco31I isoschizomers.  相似文献   

6.
Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.  相似文献   

7.
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.  相似文献   

8.
《Cell》1986,47(4):v
  相似文献   

9.
Type II restriction endonuclease activities of Helicobacter pylori strain Roberts and of the type strain H. pylori NCTC 11637 were detected and analysed by conventional techniques. The endonucleases were partially purified, their optima for activity and their recognition and cleavage sites were determined. H. pylori (Roberts) contained at least two enzymes: HpyBI was an isoschizomer of RsaI (GT/AC) and HpyBII was of a novel specificity (GTN/NAC). H. pylori NCTC 11637 was found to contain an isoschizomer of EcoRV (HpyCI: GAT/ATC) and at least one other enzyme which was too unstable to characterise.  相似文献   

10.
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.  相似文献   

11.
A set of 6 base-modified 2′-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.  相似文献   

12.
2-Methyl-4-carboxy,5-hydroxy-3,4,5,6-tetrahydropyri- midine (THP(A) or hydroxyectoine) and 2-methyl,4-carboxy-3,4,5, 6-tetrahydropyrimidine (THP(B) or ectoine) are now recognized as ubiquitous bacterial osmoprotectants. To evaluate the impact of tetrahydropyrimidine derivatives (THPs) on protein-DNA interaction and on restriction-modification systems, we have examined their effect on the cleavage of plasmid DNA by 10 type II restriction endonucleases. THP(A) completely arrested the cleavage of plasmid and bacteriophage lambda DNA by EcoRI endonuclease at 0.4 mM and the oligonucleotide (d(CGCGAATTCGCG))2 at about 4.0 mM. THP(B) was 10-fold less effective than THP(A), whereas for betaine and proline, a notable inhibition was observed only at 100 mM. Similar effects of THP(A) were observed for all tested restriction endonucleases, except for SmaI and PvuII, which were inhibited only partially at 50 mM THP(A). No effect of THP(A) on the activity of DNase I, RNase A, and Taq DNA polymerase was noticed. Gel-shift assays showed that THP(A) inhibited the EcoRI-(d(CGCGAATTCGCG))2 complex formation, whereas facilitated diffusion of EcoRI along the DNA was not affected. Methylation of the carboxy group significantly decreased the activity of THPs, suggesting that their zwitterionic character is essential for the inhibition effect. Possible mechanisms of inhibition, the role of THPs in the modulation of the protein-DNA interaction, and the in vivo relevance of the observed phenomena are discussed.  相似文献   

13.
14.
15.
Site-specific restriction endonucleases in cyanobacteria   总被引:1,自引:0,他引:1  
AIM: Planktic cyanobacteria were screened for endodeoxyribonucleases. Principal component analysis (PCA) was employed to demonstrate a potential relationship between certain enzymes and a group of cyanobacteria. The data were obtained from a data bank and this study. METHODS AND RESULTS: Enzymes were partially purified using column chromatography. Anabaena strains contained Asp83/1I (5'-TTCGAA-3'), Asp83/1II (5'-GGCC-3'), Asp90I (5'-ACRYGT-3') and five isoschizomeric enzymes (5'-ATCGAT-3'). Aphanizomenon and Microcystis strains contained ApcTR183I (5'-TGCGCA-3') and Msp199I (5'-CCGG-3'), respectively. Planktothrix strains possessed Psc2I (5'-GAANNNNTTC-3'), Psc27I and Psc28I (5'-TTCGAA-3'). PCA showed that the most common cyanobacterial endonuclease types were AvaII, AvaI and AsuII. CONCLUSIONS: All planktic cyanobacteria studied contained restriction endonucleases. The defined restriction endonucleases were isoschizomers of known enzymes. The Nostoc and the Spirulina genera had an association, while the majority of the genera had no association with certain endonuclease type(s). SIGNIFICANCE AND IMPACT OF THE STUDY: The defined enzymes in this study and the estimated trend in the endonuclease type distribution allow more efficient avoidance of cyanobacterial restriction barriers.  相似文献   

16.
Orthodox Type IIP restriction endonucleases, which are commonly used in molecular biological work, recognize a single palindromic DNA recognition sequence and cleave within or near this sequence. Several new studies have reported on structural and biochemical peculiarities of restriction endonucleases that differ from the orthodox in that they require two copies of a particular DNA recognition sequence to cleave the DNA. These two sites requiring restriction endonucleases belong to different subtypes of Type II restriction endonucleases, namely Types IIE, IIF and IIS. We compare enzymes of these three types with regard to their DNA recognition and cleavage properties. The simultaneous recognition of two identical DNA sites by these restriction endonucleases ensures that single unmethylated recognition sites do not lead to chromosomal DNA cleavage, and might reflect evolutionary connections to other DNA processing proteins that specifically function with two sites.  相似文献   

17.
Restriction endonuclease-digested DNAs from several isolates of phase I and phase II Coxiella burnetii were compared using agarose gel electrophoresis and soft-laser scanning densitometry. Our results demonstrate that the two phases are, as previously assumed, alternative phases of the same organism. Although the restriction endonuclease digestion revealed genetic differences between clonal isolates of phase I and phase II C. burnetii Nine Mile strain, these differences do not appear to be related to antigenic phase variation. However, analyses of the fragment patterns generated by restriction enzyme digestion suggest potential grouping of the different isolates.  相似文献   

18.
Type II restriction endonucleases usually recognize 4-6-base pair (bp) sites on DNA and cleave each site in a separate reaction. A few type II endonucleases have 8-bp recognition sites, but these seem unsuited for restriction, since their sites are rare on most DNA. Moreover, only one endonuclease that recognizes a target containing 8 bp has been examined to date, and this enzyme, SfiI, needs two copies of this site for its DNA cleavage reaction. In this study, several endonucleases with 8-bp sites were tested on plasmids that have either one or two copies of the relevant sequence to determine if they also need two sites. SgfI, SrfI, FseI, PacI, PmeI, Sse8781I, and SdaI all acted through equal and independent reactions at each site. AscI cleaved the DNA with one site at the same rate as that with two sites but acted processively on the latter. In contrast, SgrAI showed a marked preference for the plasmid with two sites and cleaved both sites on this DNA in a concerted manner, like SfiI. Endonucleases that require two copies of an 8-bp sequence may be widespread in nature, where, despite this seemingly inappropriate requirement, they may function in DNA restriction.  相似文献   

19.
When searching for the site-specific endonucleases in several strains of Phormidium we made the following observations. Among the 16 strains that originated from 15 species of Phormidium, 12 produced one or more restriction enzymes, of which two produced the highly thermophilic restriction endonucleases PtaI and PpaAII with their optimum activity at 65-80 degrees C, which is far above the lethal temperature for the host microorganism (40 degrees C). These two temperature-resistant enzymes are isoschizomers of known BspMII and TaqI endonucleases, respectively. The presence of the thermophilic TaqI isoschizomer does not seem to play any role in the mesophilic host microorganism, which does not even contain an active cognate methyltransferase. Among the remaining 10 strains, six produced isoschizomers of endonucleases which we first described in cyanobacteria, namely: PfaAII (NdeI), PinBII and PtaI (BspMII), PlaAII (RsalI), PpaAII, PpeI (ApaI). Two enzymes, PauAII (AhaIII) and PfaAII (NdeI), belong to a group of a very rarely occurring isoschizomers. Out of 21 cyanobacterial endonucleases investigated by us, four were active in a wide range of temperatures (from 15 to 60 degrees C) which also extended the optimal growth temperature of the hosts. We assume that our observation on the presence of temperature-resistant restriction enzymes in mesophilic hosts supports the idea of horizontal gene transfer. Restriction modification systems may be an excellent tool for investigation of that phenomenon.  相似文献   

20.
Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号