首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resting membrane potential (RMP) of Aplysia neurons is very temperature-dependent, and in some cells increases with increasing temperature by as much as 2 mv/°C. RMP at room temperature may significantly exceed the potassium equilibrium potential, which can be determined by measurement of the equilibrium point of the spike after potential. The hyperpolarization on warming is completely abolished by ouabain, replacement of external Na+ by Li+, removal of external K+, and by prolonged exposure to high Ca++, while it is independent of external chloride but is increased by cocaine (3 x 10-3 M). In an identified cell that shows a marked temperature dependence of RMP, both the potassium equilibrium potential and the membrane resistance were found to be relatively independent of temperature. The hyperpolarization on warming, which may increase RMP by as much as 50%, can most reasonably be ascribed to the activity of an electrogenic Na+ pump.  相似文献   

2.
The changes of the muscle fibres volume and resting membrane potential (RMP) were studied following treatment with hypertonic medium and furosemide. The volume changes in hypertonic medium began with cell shrinkage and later have been followed by the volume increase up to normal level during 30-40 minutes. At the same time the medium hypertonicity caused muscle fibres depolarisation. The hypertonic-induced decrease of the RMP was delayed in the furosemide-treated muscle. Besides, furosemide abolished the muscle fibres volume restorative properties in hypertonic medium. It is suggested that the membrane depolarisation and cell volume restoration in hypertonic medium are the resultant effects of intracellular chloride ions level elevation which, in turn, have been evoked by activation of furosemide-sensitive Cl(-)-influx system.  相似文献   

3.
Otoom SA  Nusier MK 《Cytobios》2001,106(Z1):75-83
The effect of lamotrigine (LTG) on evoked and spontaneous seizure-like activity induced by veratridine, was investigated. Rat brain slices were examined using conventional electrophysiological intracellular techniques. Alteration of sodium channel function by veratridine (0.3 microM) induced spontaneous seizure-like activity in the hippocampal CA1 pyramidal neurons. Therapeutic concentrations of LTG (5-10 microM) inhibited both evoked and spontaneous bursting induced by veratridine. This inhibition was voltage-dependent indicating possible interaction between the drug and the inactivated state of sodium channels. There was an increase in the firing threshold of the bursting but no change in the resting membrane potential (RMP) and membrane input resistance. Results from this work suggest that the veratridine model of epilepsy is very sensitive to drugs which act on sodium channels. These data make the veratridine model a suitable tool for screening potential sodium channel-dependent antiepileptic drugs.  相似文献   

4.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   

5.
The resting membrane potential (RMP) of most cells is not greatly influenced by the transmembrane calcium gradient because at rest, the membrane has very low permeability to calcium. We have observed, however, that the resting membrane potential of muscle cells in the larval bodywall of Drosophila melanogaster varies widely as the external calcium concentration is modified. The RMP depolarized as much as 21.8 mV/mM calcium at low concentrations, and on average, about 10 mV/mM across a range typical of neurophysiological investigations. The extent to which muscle RMP varies has important implications for the measurement of synaptic potentials as well. Two parameters of excitatory junctional potential (EJP) voltage were compared across a range of RMPs. EJP amplitude (ΔV) and peak voltage (maxima) change as a function of RMP; on average, a 10 mV change in RMP elicits a 4-5 mV change in EJP amplitude and peak voltage. The influence of the calcium gradient on resting and synaptic membrane potentials led us to investigate the endogenous ion concentrations of larval hemolymph. In addition to the major monovalent ions and calcium, we report the first voltammetric analysis of magnesium concentration in larval fruit fly hemolymph.  相似文献   

6.
Tetrodotoxin and acidic pH do not change the resting membrane potential (RMP), whereas Na+ or Cl- free solutions or ouabain and furosemide equally depolarize the membrane of the earthworm somatic muscle cells. The findings of the RMP depending on extracellular K+ concentration corroborate theoretical model by Goldman-Hodgkin-Katz only in Na(+)-free medium or in presence of ouabain. The data suggest that the RMP is the sum of potassium and chlorine diffusion potentials as well as of the potential produced by electrogenic component of Na+ pump and, probably, by furosemide-sensitive Na+,K+Cl- co-transport.  相似文献   

7.
S T Green 《Life sciences》1987,40(14):1345-1355
Glass microelectrodes have been useful in the study of the electrical properties of the resting thyroid follicular cell membrane. The resting transmembrane potential (RMP) has probably been underestimated in earlier work, possible as a result of leak artefacts, and it is clear that in most species the RMP is certainly greater than -60 mV. The ratio of membrane Na+ permeability to K+ permeability (PNa/PK) is of the order of 0.07 to 0.08, and Cl- is possibly (although not definitely) distributed in a passive fashion across the cell membrane, indicating that the transmembrane K+ gradient is the most important factor in the generation of the RMP. The existence of an electrogenic sodium pump in the follicular cell membrane has been demonstrated: the pump contributes about -2 mV to the RMP under control conditions. Follicular cells are completely electrically coupled, the basic coupled cellular unit probably being equivalent to the individual thyroid follicle, and the specific membrane resistance and specific membrane capacitance have been calculated to be 5 k omega. cm2 and 3.6 microF/cm2 respectively.  相似文献   

8.
Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.  相似文献   

9.
S. Lodge  J.E. Sproat 《Life sciences》1981,28(20):2251-2256
Microelectrode studies of pacemaker and non pacemaker cells in pregnant rat uterus have shown the pacemaker areas to have a constant value of RMP throughout pregnancy which was always significantly smaller than that of non pacemaker cells. The development of new pacemaker areas was associated with membrane depolarization. A number of agents and conditions which caused membrane depolarization also induced pacemaker activity in previously non pacemaker areas but did so at different levels of membrane depolarization. Potassium depolarization failed to induce pacemaker activity. It is concluded that a low level of RMP is an important factor but not sufficient alone to explain the occurence of pacemaker activity.The resting membrane potentials (RMP) of spontaneously active smooth muscles are appreciably smaller than those of nonspontaneously active muscles (3) and comparable in magnitude to those of other tissues showing spontaneous activity such as the frog sinus venosus(7), rabbit sino-auricular node (10) and embryonic heart muscle (6). In intestinal smooth muscle, where all cells appear to be spontaneously active, a clear relationship can be demonstrated between fluctuating levels of RMP and the incidence of action potential activity, and the ionic and metabolic basis of slow wave activity has been extensively investigated (5, 8). In other smooth muscles, such as the ureter and uterus, where electrical activity arises from pacemaker areas (11, 12), the underlying causes of spontaneous activity are less well understood and the relationships between pacemaker activity, RMP and excitability have not been clearly defined. As an initial approach to studying this problem we have chosen to investigate the relationship between RMP and pacemaker activity in the uterus of the pregnant rat.  相似文献   

10.
1. The changes in intracellular sodium ion concentration (CiNa) of sheep cardiac Purkinje fibres in hyperosmotic solutions were studied using Na-sensitive liquid ion-exchanger microelectrodes. 2. CiNa was increased in hyperosmotic solutions containing different concentrations of sucrose from 0 to 300 mM. 3. The changes in resting membrane potential (RMP) in hyperosmotic solutions had no regularity. In most of the experiments there was hyperpolarization of the membrane but in a few cases a depolarization or no change of RMP were also observed. 4. The N-shape of I-V relations of the fibres became more pronounced in hyperosomotic solutions.  相似文献   

11.
At 21 degrees C in vitro, 0.2 and 2.0 muM of triiodothyronine (T3) produced an increase in resting membrane potential (RMP) of Rana pipens sartorius when the pH of the external solution was 7.4. The RMP was increased by 2.0 muM T3 in the presence of 10(-4) and 10(-3) M ouabain but not in 10(-3) M of 2,4 dinitrophenol. Small increases in RMP were observed with 2.0 muM T3 in solutions with low external Na. At pH 7.1 0.2 muM T3 produced a small transient increase in RMP. Membrane resistance (Rm) was found to decline gradually during exposure to 0.2 muM at a pH of 7.4. Treatment with 2.0 muM T3 at pH 7.4 was accompanied by a transient reduction in Rm. Similar transient changes in Rm were produced by 0.2 and 2.0 muM T3 at pH of 7.1 T3 reduced membrane resistance in isotonic K2SO4 and tris-buffered Mn (20 mM) solutions indicating that T3 increases potassium permeability. Direct action potentials were studied at pH 7.1. Overshoot, amplitude and rate of rise of the action potential underwent a gradual decrease in the presence of 0.2 muM T3 while thresholds remained unchanged. Thresholds were increased during exposure to 2.0 muM T3 whereas overshoot, amplitude and rate of rise underwent transient decreases followed by a return toward control levels.  相似文献   

12.
The influence of potential-dependent membrane conductances on amplitude and time course of acetylcholine (ACh) responses was studied. The investigations were performed on the identified neurons B1 and B3 of the buccal ganglion of Helix pomatia. The neurons B1 and B3 were depolarized by ACh. The depolarization was accompanied by a decrease of membrane resistance. An inward rectification occurring negative to the resting membrane potential (RMP) reduced the amplitude of the ACh depolarizations. An outward rectification occurring positive to the RMP consisted of two parts and ceiled the ACh responses. The early outward current reduced the amplitude and modified the time course of ACh responses. Local responses or axonal action potentials increased the amplitude of the ACh depolarizations.  相似文献   

13.
Despite the important roles played by ventricular fibroblasts and myofibroblasts in the formation and maintenance of the extracellular matrix, neither the ionic basis for membrane potential nor the effect of modulating membrane potential on function has been analyzed in detail. In this study, whole cell patch-clamp experiments were done using ventricular fibroblasts and myofibroblasts. Time- and voltage-dependent outward K(+) currents were recorded at depolarized potentials, and an inwardly rectifying K(+) (Kir) current was recorded near the resting membrane potential (RMP) and at more hyperpolarized potentials. The apparent reversal potential of Kir currents shifted to more positive potentials as the external K(+) concentration ([K(+)](o)) was raised, and this Kir current was blocked by 100-300 muM Ba(2+). RT-PCR measurements showed that mRNA for Kir2.1 was expressed. Accordingly, we conclude that Kir current is a primary determinant of RMP in both fibroblasts and myofibroblasts. Changes in [K(+)](o) influenced fibroblast membrane potential as well as proliferation and contractile functions. Recordings made with a voltage-sensitive dye, DiBAC(3)(4), showed that 1.5 mM [K(+)](o) resulted in a hyperpolarization, whereas 20 mM [K(+)](o) produced a depolarization. Low [K(+)](o) (1.5 mM) enhanced myofibroblast number relative to control (5.4 mM [K(+)](o)). In contrast, 20 mM [K(+)](o) resulted in a significant reduction in myofibroblast number. In separate assays, 20 mM [K(+)](o) significantly enhanced contraction of collagen I gels seeded with myofibroblasts compared with control mechanical activity in 5.4 mM [K(+)](o). In combination, these results show that ventricular fibroblasts and myofibroblasts express a variety of K(+) channel alpha-subunits and demonstrate that Kir current can modulate RMP and alter essential physiological functions.  相似文献   

14.
The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs of circular smooth muscle cells at different depths in the human small intestine and in wild-type, HO2-KO, and W/W(V) mutant mouse small intestine. In the wild-type mouse and human intestine, the RMP of circular smooth muscle cells near the myenteric plexus was -65.3 +/- 2 mV and -58.4 +/- 2 mV, respectively, and -60.1 +/- 2 mV and -49.1 +/- 1 mV, respectively, in circular smooth muscle cells at the submucosal border. Oxyhemoglobin (20 microM), a trapping agent for CO, and chromium mesoporphyrin IX, an inhibitor of heme oxygenase, abolished the transwall gradient. The RMP gradients in mouse and human small intestine were not altered by N(G)-nitro-l-arginine (200 microM). No transwall RMP gradient was found in HO2-KO mice and W/W(V) mutant mice. TTX (1 microM) and 1H-[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM) had no effect on the RMP gradient. These data suggest that the gradient in RMP across the thickness of the circular muscle layer of mouse and human small intestine is CO dependent.  相似文献   

15.
Changes in plasma membrane potential of isolated bovine adrenal chromaffin cells were measured independently by two chemical probe methods and related to corresponding effects on catecholamine secretion. The lipophilic cation tetraphenylphosphonium (TPP+) and the carbocyanine dye 3,3'-dipropylthiadicarbocyanine [DiS-C3-(5)] were used. The necessity of evaluating the subcellular distribution of TPP+ among cytoplasmic, mitochondrial, secretory granule, and bound compartments was demonstrated and the resting plasma membrane potential determined to be -55 mV. The relationship between membrane potential and catecholamine secretion was determined in response to variations in extracellular K+ and to the presence of several secretagogues including cholinergic receptor ligands, veratridine, and ionophores for Na+ and K+. The dependence of potential on K+ concentration fit the Goldman constant field equation with a Na/K permeability ratio of 0.1. The dependence of both K+- and veratridine-evoked catecholamine secretion on membrane potential exhibited a potential threshold of about -40 mV before a significant rise in secretion occurred. This is likely related to the threshold for opening of voltage-sensitive Ca2+ channels. Acetylcholine and nicotine evoked a large secretory response without a sufficiently sustained depolarization to be detectable by the relatively slow potential sensitive chemical probes. Decamethonium induced a detectable depolarization of the chromaffin cells. Veratridine and gramicidin evoked both membrane depolarization and catecholamine release. By contrast the K ionophore valinomycin evoked significant levels of secretion without any depolarization. This is consistent with its utilization of an intracellular source of Ca2+ and the independence of its measured secretory response on extracellular Ca2+.  相似文献   

16.
Voltage-dependent variability in the shape of synaptic responses of the LDS interneuron, an identified nonspiking cell of crayfish, to mechanosensory stimulation was studied using intracellular recording and current injection techniques. Stimulation of the sensory root ipsilateral to the interneuron soma evoked a large depolarizing synaptic response. Its peak amplitude was decreased and the time course was shortened when the LDS interneuron was depolarized by current injection. When the cell was hyperpolarized, the peak amplitude was increased and the time course was prolonged. Upon large hyperpolarization, however, the amplitude did not increase further while the time course showed a slight decrease. The dendritic membrane of the LDS interneuron was found to show an outward rectification upon depolarization and an inward rectification upon large hyperpolarization. Current injection experiments at varying membrane potentials revealed that the voltage-dependent changes in the shape of the synaptic response were based on an increase in membrane conductance due to the rectifying properties of the LDS interneuron. Stimulation of the contralateral root evoked a small depolarizing potential comprising an early excitatory response and a later inhibitory component. Its shape also varied depending on the membrane potential in a manner similar to that of the synaptic response evoked ipsilaterally.  相似文献   

17.
Many cell types have significant negative resting membrane potentials (RMPs) resulting from the activity of potassium‐selective and chloride‐selective ion channels. In excitable cells, such as neurones, rapid changes in membrane permeability underlie the generation of action potentials. Chondrocytes have less negative RMPs and the role of the RMP is not clear. Here we examine the basis of the chondrocyte RMP and possible physiological benefits. We demonstrate that maintenance of the chondrocyte RMP involves gadolinium‐sensitive cation channels. Pharmacological inhibition of these channels causes the RMP to become more negative (100 µM gadolinium: ΔVm = ?30 ± 4 mV). Analysis of the gadolinium‐sensitive conductance reveals a high permeability to calcium ions (PCa/PNa ≈80) with little selectivity between monovalent ions; similar to that reported elsewhere for TRPV5. Detection of TRPV5 by PCR and immunohistochemistry and the sensitivity of the RMP to the TRPV5 inhibitor econazole (ΔVm = ?18 ± 3 mV) suggests that the RMP may be, in part, controlled by TRPV5. We investigated the physiological advantage of the relatively positive RMP using a mathematical model in which membrane stretch activates potassium channels allowing potassium efflux to oppose osmotic water uptake. At very negative RMP potassium efflux is negligible, but at more positive RMP it is sufficient to limit volume increase. In support of our model, cells clamped at ?80 mV and challenged with a reduced osmotic potential swelled approximately twice as much as cells at +10 mV. The positive RMP may be a protective adaptation that allows chondrocytes to respond to the dramatic osmotic changes, with minimal changes in cell volume. J. Cell. Physiol. 226: 2979–2986, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
The resting membrane potential (RMP) of mouse diaphragm muscle was measured in solutions containing several concentrations of K+ (0.4 to 5 mmol/l) or one of the following cations: Tl+ (0.4, 1 or 2 mmol/l), Rb+ (1, 2 or 5 mmol/l), or NH+4 (4, 8 or 16 mmol/l). In terms of controlling the RMP, the ratios of the efficacies were Tl+:K+:Rb+:NH+4 = 2.5:1.0:1.0:0.12. These ratios are similar to those of the selectivities of the voltage dependent K+ channel (delayed rectifier) in frog nerve and muscle, and this similarity suggests that the resting membrane potential may be controlled by this channel.  相似文献   

19.
Pharmacological and kinetic properties of the inward rectifier potassium current Iir the frog embryonic skeletal myocytes were found to be identical to those of adult frog skeletal muscle fibres. The data obtained suggest that the Iir plays the main role in maintaining the myocytes resting membrane potential (RMP) when chloride conductance is insignificant. Changes of the integral conductance Gir and the RMP values correlated with the T-system development. The inward rectifier K+ channels, from the early stages of the muscle seem to be located in the T-tubule membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号