首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human scavenger receptor class B, member 2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL1) have been identified to be the cellular receptors for enterovirus 71 (EV71). We compared the EV71 infection efficiencies of mouse L cells that expressed SCARB2 (L-SCARB2) and PSGL1 (L-PSGL1) and the abilities of SCARB2 and PSGL1 to bind to the virus. L-SCARB2 cells bound a reduced amount of EV71 compared to L-PSGL1 cells. However, EV71 could infect L-SCARB2 cells more efficiently than L-PSGL1 cells. The results suggested that the difference in the binding capacities of the two receptors was not the sole determinant of the infection efficiency and that SCARB2 plays an essential role after attaching to virions. Therefore, we examined the viral entry into L-SCARB2 cells and L-PSGL1 cells by immunofluorescence microscopy. In both cells, we detected internalized EV71 virions that colocalized with an early endosome marker. We then performed a sucrose density gradient centrifugation analysis to evaluate viral uncoating. After incubating the EV71 virion with L-SCARB2 cells or soluble SCARB2 under acidic conditions below pH 6.0, we observed that part of the native virion was converted into an empty capsid that lacked both genomic RNA and VP4 capsid proteins. The results suggested that the uncoating of EV71 requires both SCARB2 and an acidic environment and occurs after the internalization of the virus-receptor complex into endosomes. However, the empty capsid formation was not observed after incubation with L-PSGL1 cells or soluble PSGL1 under any of the tested pH conditions. These results indicated that SCARB2 is capable of viral binding, viral internalization, and viral uncoating and that the low infection efficiency of L-PSGL1 cells is due to the inability of PSGL1 to induce viral uncoating. The characterization of SCARB2 as an uncoating receptor greatly contributes to the understanding of the early steps of EV71 infection.  相似文献   

2.
Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses  相似文献   

3.
Lin YW  Lin HY  Tsou YL  Chitra E  Hsiao KN  Shao HY  Liu CC  Sia C  Chong P  Chow YH 《PloS one》2012,7(1):e30507
Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus.  相似文献   

4.
Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.  相似文献   

5.
We previously identified human scavenger receptor class B, member 2 (SCARB2), as a cellular receptor for enterovirus 71 (EV71). Expression of human SCARB2 (hSCARB2) permitted mouse L929 cells to efficiently bind to virions and to produce both viral proteins and progeny viruses upon EV71 infection. Mouse Scarb2 (mScarb2) exhibited 85.8% amino acid identity and 99.9% similarity to hSCARB2. The expression of mScarb2 in L929 cells conferred partial susceptibility. Very few virions bound to mScarb2-expressing cells. The viral titer in L929 cells expressing mScarb2 was approximately 40- to 100-fold lower than that in L929 cells expressing hSCARB2. Using hSCARB2-mScarb2 chimeric mutants, we attempted to map the region that was important for efficient EV71 infection. L929 cells expressing chimeras that carried amino acids 142 to 204 from the human sequence were susceptible to EV71, while chimeras that carried the mouse sequence in this region were not. Moreover, this region was also critical for binding to virions. The determination of this region in hSCARB2 that is important for EV71 binding and infection greatly contributes to the understanding of virus-receptor interactions. Further studies will clarify the early steps of EV71 infection.  相似文献   

6.
NF449, a sulfated compound derived from the antiparasitic drug suramin, was previously reported to inhibit infection by enterovirus A71 (EV-A71). In the current work, we found that NF449 inhibits virus attachment to target cells, and specifically blocks virus interaction with two identified receptors—the P-selectin ligand, PSGL-1, and heparan sulfate glycosaminoglycan—with no effect on virus binding to a third receptor, the scavenger receptor SCARB2. We also examined a number of commercially available suramin analogues, and newly synthesized derivatives of NF449; among these, NF110 and NM16, like NF449, inhibited virus attachment at submicromolar concentrations. PSGL-1 and heparan sulfate, but not SCARB2, are both sulfated molecules, and their interaction with EV-A71 is thought to involve positively charged capsid residues, including a conserved lysine at VP1-244, near the icosahedral 5-fold vertex. We found that mutation of VP1-244 resulted in resistance to NF449, suggesting that this residue is involved in NF449 interaction with the virus capsid. Consistent with this idea, NF449 and NF110 prevented virus interaction with monoclonal antibody MA28-7, which specifically recognizes an epitope overlapping VP1-244 at the 5-fold vertex. Based on these observations we propose that NF449 and related compounds compete with sulfated receptor molecules for a binding site at the 5-fold vertex of the EV-A71 capsid.  相似文献   

7.
Yang SL  Chou YT  Wu CN  Ho MS 《Journal of virology》2011,85(22):11809-11820
Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose.  相似文献   

8.
Human enterovirus species A (HEV-A) consists of at least 16 members of different serotypes that are known to be the causative agents of hand, foot, and mouth disease (HFMD), herpangina, and other diseases, such as respiratory disease and polio-like flaccid paralysis. Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the major causative agents of HFMD. CVA5, CVA6, CVA10, and CVA12 mainly cause herpangina or are occasionally involved with sporadic cases of HFMD. We have previously shown that human scavenger receptor class B, member 2 (SCARB2) is a cellular receptor for EV71 and CVA16. Using a large number of clinical isolates of HEV-A, we explored whether all clinical isolates of EV71 and other serotypes of HEV-A infected cells via SCARB2. We tested this possibility by infecting L-SCARB2 cells, which are L929 cells expressing human SCARB2, by infecting human RD cells that had been treated with small interfering RNAs for SCARB2 and by directly binding the viruses to a soluble SCARB2 protein. We showed that all 162 clinical isolates of EV71 propagated in L-SCARB2 cells, suggesting that SCARB2 is the critical receptor common to all EV71 strains. In addition, CVA7, CVA14, and CVA16, which are most closely related to each other, also utilized SCARB2 for infection. EV71, CVA14, and CVA16 are highly associated with HFMD, and EV71 and CVA7 are occasionally associated with neurological diseases, suggesting that SCARB2 plays important roles in the development of these diseases. In contrast, another group of viruses, such as CVA2, CVA3, CVA4, CVA5, CVA6, CVA8, CVA10, and CVA12, which are relatively distant from the EV71 group, is associated mainly with herpangina. None of these clinical isolates infected via the SCARB2-dependent pathway. HEV-A viruses can be divided into at least two groups depending on the use of SCARB2, and the receptor usage plays an important role in developing the specific diseases for each group.  相似文献   

9.
Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential therapeutic agents to control and treat EV71 infection.  相似文献   

10.
11.
为了揭示肠道病毒71型(enterovirus71,EV71)的复制与宿主细胞Raf/MEK/ERK信号通路(简称ERK通路)的相互关系,本研究应用临床诊断为手足口病的患儿疱疹液,通过易感细胞分离培养、RT-PCR及序列测定,以及Western印迹技术等方法,成功分离到EV71临床株.进一步用该分离株感染易感细胞,通过观察宿主细胞p-ERK1/2蛋白磷酸化水平、病毒特异性衣壳蛋白VP1水平、病毒半数组织培养感染量(50%tissue culture infectious dose,TCID50),以及感染细胞的CPE等指标,以期揭示ERK通路在EV71复制的作用.结果表明,EV71的复制可引起细胞ERK通路的活化;而用MEK1/2特异性的抑制剂U0126预先抑制ERK通路的活化,可显著地降低受染细胞上清液中的病毒的感染滴度(以TCID50表示)、受染细胞中EV71VP1蛋白水平、受染细胞中EV71核酸水平,以及受染细胞的细胞病变效应(cytopathic effect,CPE).提示ERK信号通路的活化对EV71的复制具有重要的作用.本研究为进一步阐明EV71在宿主细胞内的复制机制、寻找新型抗病毒靶标等研究奠定了良好的基础.  相似文献   

12.
Viruses utilize host factors for their efficient proliferation. By evaluating the inhibitory effects of compounds in our library, we identified inhibitors of cyclophilin A (CypA), a known immunosuppressor with peptidyl-prolyl cis-trans isomerase activity, can significantly attenuate EV71 proliferation. We demonstrated that CypA played an essential role in EV71 entry and that the RNA interference-mediated reduction of endogenous CypA expression led to decreased EV71 multiplication. We further revealed that CypA directly interacted with and modified the conformation of H-I loop of the VP1 protein in EV71 capsid, and thus regulated the uncoating process of EV71 entry step in a pH-dependent manner. Our results aid in the understanding of how host factors influence EV71 life cycle and provide new potential targets for developing antiviral agents against EV71 infection.  相似文献   

13.
Most poliovirus (PV) strains, such as PV type 1/Mahoney, cannot infect the mouse central nervous system. We previously identified two determinants of mouse adaptation of PV type 1/Mahoney at positions 22 and 31 of the viral capsid proteins VP1 and VP2, respectively (T. Couderc, J. Hogle, H. Le Blay, F. Horaud, and B. Blondel, J. Virol. 67:3808-3817, 1993). These residues are located on the interior surface of the capsid. In an attempt to understand the molecular mechanisms of adaptation of PV to mice, we investigated the effects of these two determinants on the viral multiplication cycle in a human cell line. Both determinants enhanced receptor-mediated conformational changes leading to altered particles of 135S, one of the first steps of uncoating, and viral internalization. Furthermore, the residue at position 22 of VP1 appears to facilitate RNA release. These results strongly suggest that these determinants could also facilitate conformational changes mediated by the PV murine receptor and internalization in the mouse nerve cell, thus allowing PV to overcome its host range restriction. Moreover, both mouse adaptation determinants are responsible for defects in the assembly of virions in human cells and affect the thermostability of the viral particles. Thus, these mouse adaptation determinants appear to control the balance between the viral capsid plasticity needed for the conformational changes in the early steps of infection and the structural requirements which are involved in the assembly and the stability of virions.  相似文献   

14.
ABSTRACT: BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. RESULTS: We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, MAA and SNA, could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. CONCLUSIONS: In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells.  相似文献   

15.
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process.  相似文献   

16.
Human enterovirus 71 (EV71) infection has emerged as a major threat to children; however, no effective antiviral treatment or vaccine is currently available. Antibody-based treatment shows promises to control this growing public health problem of EV71 infection, and a few potent monoclonal antibodies (mAbs) targeting viral capsid protein have been well described. Here, we generated an EV71-specific mouse mAb 2G8 that conferred full protection against lethal EV71 challenge in a suckling mouse model. 2G8 belonged to IgM isotype and neutralized EV71 at the attachment stage. Biochemical assays mapped the binding epitope of 2G8 to the SP70 peptide, which spanning amino acid residues 208–222 on the VP1 protein. Alanine scanning mutagenesis defined the essential roles of multiple residues, including Y208, T210, G212, K215, K218, L220, E221, and Y222, for 2G8 binding. Then, a panel of single mutation was individually introduced into the EV71 infectious clone by reverse genetics, and three mutant viruses, K215A, K218A, and L220A, were successfully recovered and characterized. Biochemical and neutralization assays revealed that K218A mutant partially escaped 2G8 neutralization, while L220A completely abolished 2G8 binding and neutralization. In particular, neutralization assays with human sera demonstrated that K218A and L220A substitutions are also critical for antibody neutralization in natural infection population. These findings not only generate a protective mAb candidate with therapeutic potential but also provide insights into antibody-mediated EV71 neutralization mechanism.  相似文献   

17.
Some strains of enterovirus 71 (EV71), but not others, infect leukocytes by binding to a specific receptor molecule: the P-selectin glycoprotein ligand-1 (PSGL-1). We find that a single amino acid residue within the capsid protein VP1 determines whether EV71 binds to PSGL-1. Examination of capsid sequences of representative EV71 strains revealed that the PSGL-1-binding viruses had either a G or a Q at residue 145 within the capsid protein VP1 (VP1-145G or Q), whereas PSGL-1-nonbinding viruses had VP1-145E. Using site-directed mutagenesis we found that PSGL-1-binding strains lost their capacity to bind when VP1-145G/Q was replaced by E; conversely, nonbinding strains gained the capacity to bind PSGL-1 when VP1-145E was replaced with either G or Q. Viruses with G/Q at VP1-145 productively infected a leukocyte cell line, Jurkat T-cells, whereas viruses with E at this position did not. We previously reported that EV71 binds to the N-terminal region of PSGL-1, and that binding depends on sulfated tyrosine residues within this region. We speculated that binding depends on interaction between negatively charged sulfate groups and positively charged basic residues in the virus capsid. VP1-145 on the virus surface is in close proximity to conserved lysine residues at VP1-242 and VP1-244. Comparison of recently published crystal structures of EV71 isolates with either Q or E at VP1-145 revealed that VP1-145 controls the orientation of the lysine side-chain of VP1-244: with VP1-145Q the lysine side chain faces outward, but with VP1-145E, the lysine side chain is turned toward the virus surface. Mutation of VP1-244 abolished virus binding to PSGL-1, and mutation of VP1-242 greatly reduced binding. We propose that conserved lysine residues on the virus surface are responsible for interaction with sulfated tyrosine residues at the PSGL-1 N-terminus, and that VP1-145 acts as a switch, controlling PSGL-1 binding by modulating the exposure of VP1-244K.  相似文献   

18.
Meng T  Kolpe AB  Kiener TK  Chow VT  Kwang J 《PloS one》2011,6(7):e21757

Background

Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization.

Methodology/Principal Finding

In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1) of EV71-Fuyang (subgenogroup C4) was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV) immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4) in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains.

Conclusion

Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns.  相似文献   

19.
Periodic outbreaks of hand, foot and mouth disease(HFMD) occur in children under 5 years old, and can cause death in some cases. The C4 strain of enterovirus 71(EV71) is the main pathogen that causes HFMD in China. Although no drugs against EV71 are available, some studies have shown that candidate vaccines or viral capsid proteins can produce anti-EV71 immunity. In this study, female BABL/c mice(6–8 weeks old) were immunized with virus-like particles(VLPs) of EV71 produced in yeast to screen for anti-EV71 antibodies. Two hybridomas that could produce neutralizing antibodies against EV71 were obtained. Both neutralizing m Abs(D4 and G12) were confirmed to bind the VP1 capsid protein of EV71, and could protect 95% cells from 100 TCID50 EV71 infection at 25 μg/m L solution(lowest concentration). Those two neutralizing m Abs identified in the study may be promising candidates in development for m Abs to treat EV71 infection, and utilized as suitable reagents for use in diagnostic tests and biological studies.  相似文献   

20.
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号