首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
What is the nature of the genetic changes underlying phenotypic evolution? We have catalogued 1008 alleles described in the literature that cause phenotypic differences among animals, plants, and yeasts. Surprisingly, evolution of similar traits in distinct lineages often involves mutations in the same gene (“gene reuse”). This compilation yields three important qualitative implications about repeated evolution. First, the apparent evolution of similar traits by gene reuse can be traced back to two alternatives, either several independent causative mutations or a single original mutational event followed by sorting processes. Second, hotspots of evolution—defined as the repeated occurrence of de novo mutations at orthologous loci and causing similar phenotypic variation—are omnipresent in the literature with more than 100 examples covering various levels of analysis, including numerous gain‐of‐function events. Finally, several alleles of large effect have been shown to result from the aggregation of multiple small‐effect mutations at the same hotspot locus, thus reconciling micromutationist theories of adaptation with the empirical observation of large‐effect variants. Although data heterogeneity and experimental biases prevented us from extracting quantitative trends, our synthesis highlights the existence of genetic paths of least resistance leading to viable evolutionary change.  相似文献   

2.
Although both genotypes with elevated mutation rate (mutators) and mobilization of insertion sequence (IS) elements have substantial impact on genome diversification, their potential interactions are unknown. Moreover, the evolutionary forces driving gradual accumulation of these elements are unclear: Do these elements spread in an initially transposon-free bacterial genome as they enable rapid adaptive evolution? To address these issues, we inserted an active IS1 element into a reduced Escherichia coli genome devoid of all other mobile DNA. Evolutionary laboratory experiments revealed that IS elements increase mutational supply and occasionally generate variants with especially large phenotypic effects. However, their impact on adaptive evolution is small compared with mismatch repair mutator alleles, and hence, the latter impede the spread of IS-carrying strains. Given their ubiquity in natural populations, such mutator alleles could limit early phase of IS element evolution in a new bacterial host. More generally, our work demonstrates the existence of an evolutionary conflict between mutation-promoting mechanisms.  相似文献   

3.
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.  相似文献   

4.
Neutralism and selectionism are extremes of an explanatory spectrum for understanding patterns of molecular evolution and the emergence of evolutionary innovation. Although recent genome-scale data from protein-coding genes argue against neutralism, molecular engineering and protein evolution data argue that neutral mutations and mutational robustness are important for evolutionary innovation. Here I propose a reconciliation in which neutral mutations prepare the ground for later evolutionary adaptation. Key to this perspective is an explicit understanding of molecular phenotypes that has only become accessible in recent years.  相似文献   

5.
The extent and pattern of protein and DNA polymorphisms are discussed with emphasis on the mechanism of maintenance of the polymorphisms. Statistical studies suggest that a large proportion of genetic variability at the molecular level is maintained by a mutation-drift balance. At some loci, such as those for histocompatibility in mammals, however, a form of overdominant selection seems to be involved. In the presence of overdominant selection, polymorphic alleles may be maintained for tens of millions of years, so that the number of nucleotide differences between alleles is often very large, as in the case of self-incompatibility alleles in plants. There are also an increasing number of examples in which an adaptive change of a morphological or physiological character is caused by a single nucleotide substitution. Nevertheless, these mutations seem to be a small proportion of the total nucleotide changes that contribute to genetic variability and evolution. Although there are many examples of frequency-dependent selection, this form of selection is apparently unimportant for the maintenance of genetic variability except in some special cases. Observations on the evolutionary change of DNA suggest that the driving force of evolution is mutation rather than selection.  相似文献   

6.
Linkage analysis was developed to detect excess co-segregation of the putative alleles underlying a phenotype with the alleles at a marker locus in family data. Many different variations of this analysis and corresponding study design have been developed to detect this co-segregation. Linkage studies have been shown to have high power to detect loci that have alleles (or variants) with a large effect size, i.e. alleles that make large contributions to the risk of a disease or to the variation of a quantitative trait. However, alleles with a large effect size tend to be rare in the population. In contrast, association studies are designed to have high power to detect common alleles which tend to have a small effect size for most diseases or traits. Although genome-wide association studies have been successful in detecting many new loci with common alleles of small effect for many complex traits, these common variants often do not explain a large proportion of disease risk or variation of the trait. In the past, linkage studies were successful in detecting regions of the genome that were likely to harbor rare variants with large effect for many simple Mendelian diseases and for many complex traits. However, identifying the actual sequence variant(s) responsible for these linkage signals was challenging because of difficulties in sequencing the large regions implicated by each linkage peak. Current 'next-generation' DNA sequencing techniques have made it economically feasible to sequence all exons or the whole genomes of a reasonably large number of individuals. Studies have shown that rare variants are quite common in the general population, and it is now possible to combine these new DNA sequencing methods with linkage studies to identify rare causal variants with a large effect size. A brief review of linkage methods is presented here with examples of their relevance and usefulness for the interpretation of whole-exome and whole-genome sequence data.  相似文献   

7.
Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change.  相似文献   

8.
9.

Background  

Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare.  相似文献   

10.
The wild boar is an ancestor of the domestic pig and an important game species with the widest geographical range of all ungulates. Although a large amount of data are available on major histocompatibility complex (MHC) variability in domestic pigs, only a few studies have been performed on wild boars. Due to their crucial role in appropriate immune responses and extreme polymorphism, MHC genes represent some of the best candidates for studying the processes of adaptive evolution. Here, we present the results on the variability and evolution of the entire MHC class II SLA‐DRB1 locus exon 2 in 133 wild boars from Croatia. Using direct sequencing and cloning methods, we identified 20 SLA‐DRB1 alleles, including eight new variants, with notable divergence. In some individuals, we documented functional locus duplication, and SLA‐DRB1*04:10 was identified as the allele involved in the duplication. The expression of a duplicated locus was confirmed by cloning and sequencing cDNA‐derived amplicons. Based on individual genotypes, we were able to assume that alleles SLA‐DRB1*04:10 and SLA‐DRB1*06:07 are linked as an allelic combination that co‐evolves as a two‐locus haplotype. Our investigation of evolutionary processes at the SLA‐DRB1 locus confirmed the role of intralocus recombination in generating allelic variability, whereas tests of positive selection based on the dN/dS (non‐synonymous/synonymous substitution rate ratio) test revealed atypically weak and ambiguous signals.  相似文献   

11.
Neo-darwinists have long argued that parallel evolution, the repeated evolution of similar phenotypes in closely related lineages, is caused by the action of similar environments on alleles at many loci of small effect. A more controversial possibility is that the genetic architecture of traits initiates parallelism, sometimes through fixation of alleles of large effect. Recent research (by Cole et al., Colosimo et al., Cresko et al., and Shapiro et al.) offers the surprising insight that reduction in two armor traits of threespine stickleback is governed by independently segregating major loci as well as additional quantitative trait loci (QTL), and that alleles at the same major loci are associated with parallel phenotypes in globally distributed populations. This research suggests the emergence of a new and exciting vertebrate model system for evolutionary genetics.  相似文献   

12.
Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well‐documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer‐lived species tend to have slower rates of molecular evolution than their shorter‐lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long‐lived tree‐like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines, but will be necessary for a full appreciation of molecular evolution.  相似文献   

13.
Choi SC  Stone EA  Kishino H  Thorne JL 《Gene》2009,441(1-2):45-52
We consider the inference of which of two alleles is ancestral when the alleles have a single nonsynonymous difference and when natural selection acts via protein tertiary structure. Whereas the probability that an allele is ancestral under neutrality is equal to its frequency, under selection this probability depends on allele frequency and on the magnitude and direction of selection pressure. Although allele frequencies can be well estimated from intraspecific data, small fitness differences have a large evolutionary impact but can be difficult to estimate with only intraspecific data. Methods for predicting aspects of phenotype from genotype can supplement intraspecific sequence data. Recently developed statistical techniques can assess effects of phenotypes, such as protein tertiary structure on molecular evolution. While these techniques were initially designed for comparing protein-coding genes from different species, the resulting interspecific inferences can be assigned population genetic interpretations to assess the effect of selection pressure, and we use them here along with intraspecific allele frequency data to estimate the probability that an allele is ancestral. We focus on 140 nonsynonymous single nucleotide polymorphisms of humans that are in proteins with known tertiary structures. We find that our technique for employing protein tertiary structure information yields some biologically plausible results but that it does not substantially improve the inference of ancestral human allele types.  相似文献   

14.
The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome‐wide next generation sequencing of DNA pools (Pool‐Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome‐wide false discovery rates < 0.005%) deviating from neutral expectation. Importantly, the evolutionary trajectories of the selected alleles were heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects.  相似文献   

15.
16.
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among‐population or among‐generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors – temperature and competition – are unlikely to generate the correlation because they affected one parameter more than the other, and identified others – most notably, environmental novelty – that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes.  相似文献   

17.
Proteomics has been applied with great potential to elucidate molecular mechanisms in plants. This is especially valid in the case of non‐model crops of which their genome has not been sequenced yet, or is not well annotated. Plantains are a kind of cooking bananas that are economically very important in Africa, India, and Latin America. The aim of this work was to characterize the fruit proteome of common dessert bananas and plantains and to identify proteins that are only encoded by the plantain genome. We present the first plantain fruit proteome. All data are available via ProteomeXchange with identifier PXD005589. Using our in‐house workflow, we found 37 alleles to be unique for plantain covered by 59 peptides. Although we do not have access (yet) to whole‐genome sequencing data from triploid banana cultivars, we show that proteomics is an easily accessible complementary alternative to detect different allele specific SNPs/SAAPs. These unique alleles might contribute toward the differences in the metabolism between dessert bananas and plantains. This dataset will stimulate further analysis by the scientific community, boost plantain research, and facilitate plantain breeding.  相似文献   

18.
The molecular population genetics of regulatory genes   总被引:19,自引:0,他引:19  
Regulatory loci, which may encode both trans acting proteins as well as cis acting promoter regions, are crucial components of an organism's genetic architecture. Although evolution of these regulatory loci is believed to underlie the evolution of numerous adaptive traits, there is little information on natural variation of these genes. Recent molecular population genetic studies, however, have provided insights into the extent of natural variation at regulatory genes, the evolutionary forces that shape them and the phenotypic effects of molecular regulatory variants. These recent analyses suggest that it may be possible to study the molecular evolutionary ecology of regulatory diversification by examining both the extent and patterning of regulatory gene diversity, the phenotypic effects of molecular variation at these loci and their ecological consequences.  相似文献   

19.
Although rapid phenotypic evolution during range expansion associated with colonization of contrasting habitats has been documented in several taxa, the evolutionary mechanisms that underlie such phenotypic divergence have less often been investigated. A strong candidate for rapid ecotype formation within an invaded range is the three‐spine stickleback in the Lake Geneva region of central Europe. Since its introduction only about 140 years ago, it has undergone a significant expansion of its range and its niche, now forming phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of the large lake or small inlet streams, respectively. By comparing museum collections from different times with contemporary population samples, we here reconstruct the evolution of parapatric phenotypic divergence through time. Using genetic data from modern samples, we infer the underlying invasion history. We find that parapatric habitat‐dependent phenotypic divergence between the lake and stream was already present in the first half of the twentieth century, but the magnitude of differentiation increased through time, particularly in antipredator defence traits. This suggests that divergent selection between the habitats occurred and was stable through much of the time since colonization. Recently, increased phenotypic differentiation in antipredator defence traits likely results from habitat‐dependent selection on alleles that arrived through introgression from a distantly related lineage from outside the Lake Geneva region. This illustrates how hybridization can quickly promote phenotypic divergence in a system where adaptation from standing genetic variation was constrained.  相似文献   

20.
The long‐running debate about the role of selection in maintaining genetic variation has been given new impetus by the discovery of hundreds of seasonally oscillating polymorphisms in wild Drosophila, possibly stabilized by an alternating summer‐winter selection regime. Historically, there has been skepticism about the potential of temporal variation to balance polymorphism, because selection must be strong to have a meaningful stabilizing effect—unless dominance also varies over time (“reversal of dominance”). Here, we develop a simplified model of seasonally variable selection that simultaneously incorporates four different stabilizing mechanisms, including two genetic mechanisms (“cumulative overdominance” and reversal of dominance), as well as ecological “storage” (“protection from selection” and boom‐bust demography). We use our model to compare the stabilizing effects of these mechanisms. Although reversal of dominance has by far the greatest stabilizing effect, we argue that the three other mechanisms could also stabilize polymorphism under plausible conditions, particularly when all three are present. With many loci subject to diminishing returns epistasis, reversal of dominance stabilizes many alleles of small effect. This makes the combination of the other three mechanisms, which are incapable of stabilizing small effect alleles, a better candidate for stabilizing the detectable frequency oscillations of large effect alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号