首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A survey to determine presence of parasitic and disease organisms and their effect on estuarine populations of striped bass, Morone saxatilis (Walbaum), was conducted monthly from May 1972 to May 1973. A total of 514 fish over 1 year old and 140 young-of-the-year were examined using standard necropsy and histological procedures. Other species of fishes were studied to determine the specificity of striped bass parasites and to determine if other fishes were reservoirs for striped bass pathogens. Forty-five species of parasitic organisms from viruses to Metazoa were recognized from striped bass. Heavy infections by some were associated with definite pathological conditions.  相似文献   

3.
The effects of wide changes in dietary levels of docosahexaenoic (DHA) or arachidonic (ArA) acids on growth, survival and fatty acid composition in body tissues of Morone larvae were examined. White bass (WB, Morone chrysops), striped bass (SB, Morone saxatilis) and sunshine hybrid bass (HSB, M. chrysopsxM. saxatilis) larvae (day 24-46) were fed Artemia nauplii enriched with algal sources of varying proportions of DHA and ArA (from 0 to over 20% of total fatty acids). WB larvae fed DHA-deficient Artemia diet retarded over 50% of their potential growth, however, increasing dietary DHA/ArA ratios were associated with a significant growth improvement. The highest proportion of polyunsaturated fatty acids was found in WB neural tissue (approx. 50% of total fatty acids), while HSB neural tissue contained the highest proportion of saturated fatty acids (approx. 35% of total fatty acids). Within the neural tissues of all Morone larvae, both DHA and ArA were generally the most dominant as well as the most responding fatty acids to dietary manipulations (except in WB fed DHA or ArA deficient diets). HSB neural tissue was particularly efficient in retaining a significant amount of DHA in the face of dietary deficiency. However, WB neural tissue was the most responsive to dietary increase in DHA, accumulating a significantly higher amount of DHA (P<0.05) than SB or HSB. Results demonstrate significant differences in fatty acid composition and growth responsiveness to dietary manipulations between Morone larvae species and within specific tissues. WB weight gain and neural tissue composition was affected most by dietary changes in both DHA and ArA whereas SB and HSB tissue compositions were generally less affected by dietary manipulations.  相似文献   

4.
5.
Antimicrobial peptides (AMPs) are increasingly recognized as a critical component of the host's defense against infection. Several types of AMPs have been recently identified from mucosal tissues or immune cells of a number of teleosts. Among these are the piscidins, which are 22 residue, alpha-helical AMPs that were originally isolated from mast cells of hybrid striped bass Morone saxatilis male x Morone chrysops female. Using an antibody specific for the conserved N-terminal amino acid sequence of piscidin 1, we used immunohistochemistry to probe skin, gill, and gastrointestinal tract of 39 teleosts representing 7 different orders. Nine fish species were piscidin-positive, with all of these species being in the Perciformes, the largest and most evolutionarily advanced order of teleosts. Piscidin-positive cells were identified in species belonging to the families Moronidae, Serranidae, Sciaenidae, Siganidae and Belontidae. Immunopositive cells were usually most consistent with mast cells, although in some species, the granule appearance and tinctorial properties diverged somewhat from those of a typical piscine mast cell. In addition, rodlet cells were piscidin-positive in one member of the family Cichlidae; to our knowledge, it is the first time that a host-associated chemical biomarker has been identified in rodlet cells. Our data suggest that piscidins are present in many evolutionarily advanced teleosts. Piscidin-immunoreactive cells were most common at sites of pathogen entry, including the skin, gill and gastrointestinal tract. These results strongly suggest that piscidins are a widespread and important component of many fishes' defense against disease.  相似文献   

6.
The ovarian development of captive-reared, striped bass Morone saxatilis was examined during a 10-week period encompassing the spawning season. Vitellogenic oocytes in March had a mean diameter of 838 ± 18 μm and did not grow significantly thereafter. Except from one non-hormone-treated fish, all females failed to undergo final oocyte maturation (FOM) and their ovaries became atretic with the onset of high spring temperatures. A clearing fixative was found useful in identifying early stages of atresia, evident by the absence of the germinal vesicle (GV). Final oocyte maturation of fish treated with gonadotropin-releasing hormone agonist (GnRHa) consisted of two phases. Early FOM lasted from 1 to 3 weeks, and was associated with lipid-droplet coalescence, and displacement of the GV and yolk globules to the peripheral cytoplasm. Late FOM lasted <24h, and consisted of yolk-globule coalescence and GV breakdown (GVBD). Ovulated eggs had completely coalesced lipid and yolk masses, with cortical alveoli lined against the cell wall. Both phases of FOM were associated with significant increases in oocyte diameter. Striped bass oocytes showed important morphological differences compared to oocytes of other members of the Moronidae family, in terms of percentage lipid content, chorion thickness and degree of hydration after ovulation.  相似文献   

7.
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a neuropathological condition affecting > 40 species of fish. Although VER affects mainly marine fish, the disease has also been detected in certain species reared in freshwater environments. There are relatively few reports concerning the disease in freshwater species, and there is not much information on clinical signs. Nevertheless, the most common clinical findings reported from affected freshwater species are consistent with the typical signs observed in marine species. In this paper we describe the main clinical signs and the laboratory results associated with the detection of a betanodavirus in hybrid striped bass x white bass (Morone saxatilis x Morone chrysops) and largemouth bass Micropterus salmoides, reared in a freshwater environment. We also detected the virus by real-time PCR and isolated it in cell culture from a batch of pike-perch Sander lucioperca farmed in the same system.  相似文献   

8.
Development of nine polymorphic microsatellites from a genomic library of hybrid striped bass (female Morone chrysops × male Morone saxatilus) DNA is described. Breeding of hybrid striped bass for aquaculture is based largely on breeding wild fish. Molecular markers such as microsatellites will be useful tools for developing broodstock, estimating heritability for production traits, and selective breeding via marker‐assisted selection. The nine polymorphic microsatellites include six dinucleotide and three complex repeat motifs. The number of alleles detected among a sample of 10 individuals of each species was relatively low. All polymerase chain reaction primer pairs also amplified products in the sea bass Dicentrarchus labrax.  相似文献   

9.
Genetic variation has been difficult to detect in striped bass (Morone saxatilis). Therefore, we identified and characterized 13 microsatellite loci to provide additional genetic markers for striped bass. Microsatellites were identified by screening a striped bass genomic library or by using primers developed for European sea bass (Dicentrarchus labrax) microsatellite loci. We found that 6 of the 13 microsatellite loci were polymorphic in DNA samples obtained from wild populations of striped bass. The number of alleles per locus varied from 3 to 12, and the observed heterozygosities ranged from 0.55 to 0.78. These results indicate that microsatellite loci provide more alleles and higher heterozygosities than other genetic markers developed for striped bass. Received November 9, 1999; accepted February 11, 2000.  相似文献   

10.
Tjensvoll K  Hodneland K  Nilsen F  Nylund A 《Gene》2005,353(2):218-230
The mitochondrial DNA (mtDNA) from the salmon louse, Lepeophtheirus salmonis, is 15445 bp. It includes the genes coding for cytochrome B (Cyt B), ATPase subunit 6 and 8 (A6 and A8), NADH dehydrogenase subunits 1-6 and 4L (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6), cytochrome c oxidase subunits I-III (COI, COII and COIII), two rRNA genes (12S rRNA and 16S rRNA) and 22 tRNAs. Two copies of tRNA-Lys are present in the mtDNA of L. salmonis, while tRNA-Cys was not identified. Both DNA strands contain coding regions in the salmon louse, in contrast to the other copepod characterized Tigriopus japonicus, but only a few genes overlap. In vertebrates, ND4 and ND4L are transcribed as one bicistronic mRNA, and are therefore localized together. The same organization is also found in crustaceans, with the exceptions of T. japonicus, Neocalanus cristatus and L. salmonis that deviate from this pattern. Another exception of the L. salmonis mtDNA is that A6 and A8 do not overlap, but are separated by several genes. The protein-coding genes have a bias towards AT-rich codons. The mitochondrial gene order in L. salmonis differs significantly from the copepods T. japonicus, Eucalanus bungii, N. cristatus and the other 13 crustaceans previously characterized. Furthermore, the mitochondrial rRNA genes are encoded on opposite strands in L. salmonis. This has not been found in any other arthropods, but has been reported in two starfish species. In a phylogenetic analysis, using an alignment of mitochondrial protein sequences, L. salmonis groups together with T. japonicus, being distant relatives to the other crustaceans.  相似文献   

11.
Striped bass Morone saxatilis were studied in order to characterize their immune responses over the short term following challenge with Mycobacterium marinum. The expression of immunity-related genes (IL-1beta, TNF-alpha, Nramp and TGF-beta) quickly increased following infection with M. marinum, but these genes were subsequently down-regulated despite the fact that bacterial counts remained high. The number of monocytes and neutrophils also initially increased at 1 d postinfection. This confirms the importance of these types of cells in initial inflammation and mycobacterial infection in striped bass. The phagocytic index of splenic leukocytes over these same time frames did not change significantly following infection. The discrete window in which inflammatory mechanisms were stimulated in striped bass may be related to the intracellular nature of this pathogen.  相似文献   

12.
We determined the complete mtDNA nucleotide sequence of Lates calcarifer using the shotgun sequencing method. The mitochondrial DNA (mtDNA) was 16,535 base pairs (bp) in length, and contained 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and one major noncoding control region (CR). The CR was unusually short at only 768 bp. A striking feature of the mitochondrial genome was the high G+C content (46.1%), which is among the highest in fish. The gene order was identical to that of a typical vertebrate. Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes of 30 fish species representing 14 suborders clearly showed Lates calcarifer was located in the cluster of fish species from the order Perciformes, supporting the traditional systematic classification. We characterized single-nucleotide polymorphisms (SNPs) in the CR by sequencing the complete CR of 25 individuals obtained from Australia and Singapore. A total of 68 SNPs were detected. Eighteen SNPs were fixed with alternative nucleotides in Australian and Singapore seabass, and these SNPs could be used for differentiating fish from the two countries.  相似文献   

13.
Oh DJ  Oh BS  Jung MM  Jung YH 《Mitochondrial DNA》2010,21(5):151-159
We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three tilefishes (Branchiostegus albus, Branchiostegus argentatus, and Branchiostegus japonicus) to characterize and compare their mitochondrial genomes (mitogenomes). The mitogenomes of B. albus, B. argentatus, and B. japonicus were 16,532, 16,550, and 16,541 bp long, respectively, and all consisted of 37 genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA (tRNAs)), which are typical for vertebrate mtDNA. As in other bony fishes, most genes were encoded on the H-strand, except for the nad6 and eight tRNA genes that were encoded on the L-strand. Among the 13 protein-coding genes of all three tilefishes, 2 reading-frame overlaps were found on the same strand: atp8 and atp6 overlapped by 10 nucleotides, and nad4L and nad4 overlapped by 7 nucleotides. The identity of the nad4 gene between B. albus and B. argentatus was the lowest at 87%. Conversely, the identity of the nad6 gene between B. albus and B. japonicus was the highest at 99%. Most tRNA genes were similar in length among the three species, while the tRNA-Ser((AGY)) of B. japonicus was 9 bp longer than those of B. albus and B. argentatus. The control region of the mitogenome spanned 853, 862, and 856 bp in B. albus, B. argentatus, and B. japonicus, respectively. A maximum likelihood tree constructed using 11,035 sites contained five independent groups with bootstrap values of 100% in support of their divergence. All three tilefishes examined were clustered with the Pomacanthidae species in Group II.  相似文献   

14.
Mechanisms of copper toxicity and consequences of exposure vary due to uptake route and ionoregulatory status. The goal of this research was to develop a model fish system to assess the influence of different Cu exposure routes (waterborne or dietary) on bioavailability, uptake, and effects in hybrid striped bass (Morone chrysops x Morone saxatilis) acclimated to fresh- or saltwater. Initially, hybrid striped bass were exposed to dietary Cu concentrations of 571, 785, and 1013 mug Cu/g, along with a control (approximately 5 microg Cu/g), for 14 days in saltwater. Intestinal and liver Cu accumulated in a dose-dependent manner in fish exposed to increasing levels of dietary Cu. Chronic (42 days) experiments were then conducted to determine sub-lethal effects of aqueous, dietary, and combined aqueous and dietary Cu exposures to both freshwater- and saltwater-acclimated hybrid striped bass. Growth and Cu accumulation in the gill, intestine, and liver were measured. Although no significant effects were observed in fish exposed to waterborne Cu, those exposed through the diet accumulated significant liver and intestinal Cu but showed no significant change in growth. Overall, these results suggest that at the levels tested, exposure to elevated waterborne Cu did not cause significant long-term tissue Cu accumulation, whereas dietary Cu exposure caused significant liver and intestinal Cu accumulation in hybrid striped bass which was comparable in both freshwater and saltwater (15 g/L).  相似文献   

15.
A large diversity of Mycobacterium spp. has been isolated from striped bass Morone saxatilis in Chesapeake Bay, USA. The new species M. shottsii and M. pseudoshottsii are the dominant isolates, while the classical fish pathogen M. marinum is found much less frequently. M. fortuitum and M. chelonae, other Mycobacterium spp. known to commonly infect fishes, have not yet been aseptically isolated from striped bass within Chesapeake Bay. While M. pseudoshottsii and M. shottsii have been phenotypically and genotypically characterized, other less common mycobacterial isolates have not. In the present study, we describe 17 photochromogenic isolates from Chesapeake Bay striped bass using phenotypic characterization and multilocus sequencing of 16S rRNA, hsp65 and rpoB genes. Genetic characterization reveals that these isolates are related to widely divergent portions of the mycobacterial phylogeny; however, some interesting trends are observed, such as a majority of isolates (10/17) belonging to the M. simiae-related grouping. Five additional isolates were assigned to the slow-growing mycobacteria (including 2 identified as M. marinum), while 2 are clearly shown to belong genetically to the fast-growing mycobacteria.  相似文献   

16.
This study explored the optimization of techniques for sperm cryopreservation of an economically important fish species, the striped bass Morone saxatilis. The volumetric shrinkage or the water transport response during freezing of sperm cells was obtained using a differential scanning calorimeter (DSC) technique. Water transport was obtained in the presence of extracellular ice at a cooling rate of 20 degrees C/min in two different media: (1) without cryoprotective agents (CPAs), and (2) with 5% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder of length of 22.8 microm and diameter 0.288 microm and was assumed to have an osmotically inactive cell volume (V(b)) of 0.6 V(0), where V(0) is the isotonic or initial cell volume. By fitting a model of water transport to the experimentally determined water transport data, the best fit membrane permeability parameters (reference membrane permeability to water, L(pg) or L(pg)[cpa] and the activation energy, E(Lp) or E(Lp)[cpa]) were determined and ranged from L(pg)=0.011-0.001 microm/min-atm, and E(Lp)=40.2-9.2 kcal/mol). The parameters obtained in this study suggested that the optimal rate of cooling for striped bass sperm cells in the presence and absence of DMSO range from 14 to 20 degrees C/min. These theoretically predicted rates of optimally freezing M. saxatilis sperm compared quite closely with independent and experimentally determined optimal rates of cooling striped bass sperm.  相似文献   

17.
We sought to develop nuclear DNA (nDNA) probes which could be used to complement mtDNA and DNA fingerprinting markers in distinguishing striped bass, Morone saxatilis (Walbaum), from discrete spawning systems. Restriction endonuclease-generated single copy, 10–20-kb striped bass nuclear nDNA fragments were cloned into the bacteriophage vector Lambda Dash II and tested in Southern blot analyses for their abilities to reveal population-specific polymorphisms. Three of the I7 nDNA sequences tested exhibited polymorphisms which potentially could be used to delineate striped bass populations. One probe, DSB 22, revealed significant genotypic frequency differences between Gulf of Mexico and Atlantic striped bass and among striped bass representative of some Atlantic systems. These preliminary results suggest that single copy nDNA sequences may provide sufficient polymorphisms to aid in stock identification of species which proved genetically monomorphic using other approaches.  相似文献   

18.
The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the H-strand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the L-strand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional light-strand replication origin folded into a typical stem-loop secondary structure and a conserved motif (5'-GCCGG-3') was found at the base of the stem within the tRNA(Cys) gene. An extent termination-associated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB-1; unusual long tandem repeats were found at the 3' end of the control region. Phylogenetic analyses supported the view that Sebastinae comprises four genera (Sebates, Hozukius, Helicolenus, and Sebasticus).  相似文献   

19.
Hox paralog group 2 (PG2) genes function to specify the development of the hindbrain and pharyngeal arch-derived structures in the Osteichthyes. In this article, we describe the cDNA cloning and embryonic expression analysis of Japanese medaka (Oryzias latipes) Hox PG2 genes. We show that there are only two functional canonical Hox genes, hoxa2a and b2a, and that a previously identified hoxa2b gene is a transcribed pseudogene, psihoxa2b. The functional genes, hoxa2a and b2a, were expressed in developing rhombomeres and pharyngeal arches in a manner that was relatively well conserved compared with zebrafish (Danio rerio) but differed significantly from orthologous striped bass (Morone saxatilis) and Nile tilapia (Oreochromis niloticus) genes, which, we suggest, may be owing to effects of post-genome duplication loss of a Hox PG2 gene in the medaka and zebrafish lineages. psihoxa2b was expressed at readily detectable levels in several noncanonical Hox expression domains, including the ventral aspect of the neural tube, the pectoral fin buds and caudal-most region of the embryonic trunk, indicative that regulatory control elements needed for spatio-temporal expression have diverged from their ancestral counterparts. Comparative expression analyses showed medaka hoxa2a and b2a expression in the 2nd pharyngeal arch (PA2) beyond the onset of chondrogenesis, which, according to previous hypotheses, suggests these genes function redundantly as selector genes of PA2 identity. We conclude that Hox PG2 gene composition and expression have diverged significantly during osteichthyan evolution and that this divergence in teleosts may be related to lineage-dependent differential gene loss following an actinopterygian-specific whole genome duplication.  相似文献   

20.
The physical mapping of Hox gene clusters from a limited number of vertebrates has shown an overall conservation in gene organization in which major evolutionary changes appear to be primarily restricted to the deletion of one or more genes, with the exception of the amplification of additional clusters as postulated from zebrafish. We have sequenced a 31 kb region of the HoxA cluster from the teleost Morone saxatilis (striped bass), both to provide a detailed physical map of this region and to better understand the nature of Hox cluster evolution among vertebrate taxa. We identified five linked Hox genes: Hoxa4, Hoxa5, Hoxa7, Hoxa9, and Hoxa10, which are organized similarly to those of other vertebrates. Furthermore, we have documented the absence of the Hoxa6 and Hoxa8 genes within the 31 kb contig. Comparison of our results to those published for other vertebrates suggests that the absence of Hoxa6 is a common characteristic of teleosts, whereas the absence of Hoxa8 is common to vertebrates in general, with the possible exception of zebrafish. Further comparisons between the HoxA genes from Morone with those from the pufferfish, Fugu rubripes, revealed the likely presence of a previously unreported Hoxa7 gene, or gene fragment, in the Fugu genome, which suggests that the Hoxa7 gene, unlike Hoxa6 or Hoxa8, is present in teleosts. In addition to these differences in vertebrate Hox cluster structure, we also observed a marked reduction in the length of the Hoxa4--a10 region between vertebrate lineages representative of teleosts and mammals. Comparative analysis of HoxA cluster organization among teleosts and mammals suggests that cluster length reduction and lineage-specific gene loss events are hallmarks of Hox cluster evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号