首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nuclear so-called fertility-restorer genes reverse the pollen sterility of cytoplasmic male-sterile (CMS) plants caused by disturbed mitochondrial-nuclear interactions. We identified a CMS-associated chimeric mitochondrial gene in an alloplasmic CMS line of Brassica oleracea in the 'mur' system. This novel chimeric gene, orf72, was found in the mitochondrial genome of donor cytoplasm. It was located downstream of normal rps7 and contained part of atp9 (atp9-b). It was expressed specifically on the nuclear background of CMS B. oleracea, partially suppressed in the fertility-restored line and entirely suppressed in the cytoplasmic donor.  相似文献   

2.
以小麦T细胞质雄性不育系75-3369A和相应保系75-3369B为材料,用限制性内切酶BamHⅠ、EcoRⅠ、hINDⅢ完全酶解,以Oenothera mtDNA qtp6,小麦线粒体基因nad3/rps12、cos1为探针进行Southern杂交,杂交结果表明,75-3369A和 75-3369B在这3个基因上或附近有显著的组织结果差异,推测这些差异可能影响了线粒体基因组的正常功能,最终引起了75-3369A雄性不育。  相似文献   

3.
O. Folkerts  M. R. Hanson 《Genetics》1991,129(3):885-895
A mitochondrial DNA (mtDNA) region termed the S-pcf locus has previously been correlated with cytoplasmic male sterility (CMS) in Petunia. In order to understand the relationship of the S-pcf locus to homologous sequences found elsewhere in mtDNAs of both CMS and fertile lines, the structure of the mitochondrial genome of CMS Petunia line 3688 was determined by cosmid walking. The S-pcf locus, which includes the only copies of genes for NADH dehydrogenase subunit 3 (nad3) and small ribosomal subunit protein 12 (rps12) was found to be located on a circular map of 396 kb, while a second almost identical circular map of 407 kb carries the only copies of the genes for 18S and 5S rRNA (rrn18 and rrn5), the only copy of a conserved unidentified gene (orf25), and the only known functional copy of atp9. Three different copies of a recombination repeat were found in six genomic environments, predicting sub-genomic circles of 277, 266 and 130 kb. The ratio of atp9 to S-pcf mtDNA sequences was approximately 1.5 to 1, indicating that sub-genomic molecules carrying these genes differ in abundance. Comparison of the mtDNA organization of the CMS line with that of the master circle of fertile Petunia line 3704 reveals numerous changes in order and orientation of ten different sectors.  相似文献   

4.
The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200–400 kDa that co-immunopurify with Cox6p. Pulse-labeling analysis disclosed a time-dependent reduction of radiolabeled Atp9p in the complexes and an increase of Atp9p in the ring form of wild type yeast and of mss51, pet111, and pet494 mutants lacking Cox1p, Cox2p, and Cox3p, respectively. Ring formation was not significantly different from wild type in an mss51 or atp10 mutant. The atp10 mutation blocks the interaction of the Atp9p ring with other modules of the ATP synthase. In contrast, ring formation was reduced in a cox6 mutant, consistent with a role of Cox6p in oligomerization of Atp9p. Cox6p involvement in ATP synthase assembly is also supported by studies showing that ring formation in cells adapting from fermentative to aerobic growth was less efficient in mitochondria of the cox6 mutant than the parental respiratory-competent strain or a cox4 mutant. We speculate that the constitutive and Cox6p-independent rate of Atp9p oligomerization may be sufficient to produce the level of ATP synthase needed for maintaining a membrane potential but limiting for optimal oxidative phosphorylation.  相似文献   

5.
Pollen formation is a complex process that is strictly controlled by genetic factors. Although many novel mitochondrial genes have been implicated in the dysfunction of mitochondrial enzymes and the cytoplasmic male sterility (CMS), there is little empirical evidence to show that CMS-related genes actually result in the dysfunction of enzyme and little is known about the regulatory mechanisms of the aberrant mitochondrial enzymes in male sterility in CMS lines. Here, we report the characterization of a novel mitochondrial gene, Ψatp6-2, which is hypothesized to play a role in male sterility in pepper. Using virus-induced gene silencing (VIGS), we observed that silencing the atp6-2 gene in the maintainer line resulted in an increase in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase along with pollen abortion, while silencing the truncated Ψatp6-2 gene in the CMS line resulted in an inhibition of ATP hydrolysis activity and restoration of fertility. Altered ATP hydrolysis also affected the tolerance of the gene-silenced plants to abiotic stresses. Localization experiments showed that premature ATP hydrolysis occurred at the tetrad stage of pollen development in the CMS line, but no ATPase activity was observed in the microspores at the later stage. These results suggest that the Ψatp6-2 gene causes the alteration in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase during pollen development, which eventually leads to male sterility in pepper.  相似文献   

6.
Woo PC  Zhen H  Cai JJ  Yu J  Lau SK  Wang J  Teng JL  Wong SS  Tse RH  Chen R  Yang H  Liu B  Yuen KY 《FEBS letters》2003,555(3):469-477
We report the complete sequence of the mitochondrial genome of Penicillium marneffei, the first complete mitochondrial DNA sequence of a thermal dimorphic fungus. This 35 kb mitochondrial genome contains the genes encoding ATP synthase subunits 6, 8, and 9 (atp6, atp8, and atp9), cytochrome oxidase subunits I, II, and III (cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), ribosomal protein of the small ribosomal subunit (rps), 28 tRNAs, and small and large ribosomal RNAs. Analysis of gene contents, gene orders, and gene sequences revealed that the mitochondrial genome of P. marneffei is more closely related to those of molds than yeasts.  相似文献   

7.
8.
9.
10.
The identification of diagnostic cytoplasmic molecular markers is of prime interest to pearl millet breeders wishing to identify sources of cytoplasmic-nuclear male sterility (CMS) which can be used as an alternative to the single source currently used in the production of F1 hybrid seed. Here, we report the classification of five pearl millet CMS sources based on RFLP analysis of isonuclear lines carried out using mitochondrial gene-specific DNA probes in combination with eight restriction endonucleases. On the basis of RFLP data, the five CMS cytoplasms can be distinguished from each other and from the isonuclear fertile cytoplasm. In addition, based on cox1, cox3, atp6 and atp9 polymorphisms, these lines can be classified into two major groups: one corresponds to A5, Aegp, Av and A1 cytoplasms, and the other consists of the A4 cytoplasm. Our results suggest that a rearrangement involving the cox1 gene might be related to CMS in the first group (A5, Aegp, Av and A1), whereas a rearrangement within the atp6/cox3 cluster region might be related to CMS in the second group (A4).  相似文献   

11.
12.
Ivanov MK  Dymshits GM 《Genetika》2007,43(4):451-468
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

13.
14.
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

15.
与烟草细胞质雄性不育相关的线粒体基因atp9的mRNA研究   总被引:1,自引:0,他引:1  
周玮  刘齐元  陈雪峰  刘飞虎  曹槐  刘次全   《广西植物》2007,27(1):114-120,39
已知导入未编辑atp9 mRNA的烟草表现细胞质雄性不育(CMS),因此认为线粒体基因atp9是引起高等植物CMS的主要基因。为了解atp9在CMS中的作用机制,从3对烟草不育系及其同型保持系中提取atp9,利用实验与理论结合来分析其mRNA在编辑前后以及在不育系及其同型保持系中的一维、三维信息差别。结果表明,atp9mRNA一维信息方面的差异,更重要的是二级结构的差异和稳定性,可能是影响ATP合成而导致CMS的根本原因。  相似文献   

16.
17.
18.
用10个线粒体基因为探针,对NCα不育系、保持系和可育F1的苗期叶片、幼蕾及未成熟种子的线粒体RNA进行了Northern分析。结果表明,这10个线粒体基因除atp6外,其余9个基因在同一材料的不同组织中没有表达差异,都属于组成型表达的线粒体基因。其中,off139、orf222、atp1、cox1、cox2、cob、rm5S、rm26S等8个线粒体基因在不育系、保持系和可育F1的苗期叶片、幼蕾及未成熟种子中有着相同的表达,属于表达不受核基因型影响,没有组织特异性的类型:atp9基因分别在同一材料的不同组织中的转录也基本没有变化,但是在3个不同的材料间具有表达差异:可能属于表达受核基因型影响、没有组织特异性的线粒体基因。atp6基因也在3个材料的叶、蕾和种子中都产生相同大小的转录本,但是在各个材料的不同组织中存在着信号强度的差异,可能是属于表达既受核基因型影响、又有组织特异性的线粒体基因。Orf222和off139分别在不育系和可育F1幼蕾中产生相同大小和丰度的转录本,但是在保持系幼蕾中没有检测到转录本;orf222检测到的3条转录本分别为1.1kb、0.9kb、0.6kb,而off139检测到0.8kb和0.6kb两条带。atp9探针在不育系和保持系幼蕾中都检测到1条0.6kb的转录本,而在可育F1幼蕾中检测到0.6kb和1.2kb的转录本。讨论了orf222、off139、atp9基因的表达与NCα细胞质雄性不育的可能关系。  相似文献   

19.
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.  相似文献   

20.
To gain insights into the nature of the mitochondrial genome in the common ancestor of all green plants, we have completely sequenced the mitochondrial DNA (mtDNA) of Mesostigma viride. This green alga belongs to a morphologically heterogeneous class (Prasinophyceae) that includes descendants of the earliest diverging green plants. Recent phylogenetic analyses of ribosomal RNAs (rRNAs) and concatenated proteins encoded by the chloroplast genome identified Mesostigma as a basal branch relative to the Streptophyta and the Chlorophyta, the two phyla that were previously thought to contain all extant green plants. The circular mitochondrial genome of Mesostigma resembles the mtDNAs of green algae occupying a basal position within the Chlorophyta in displaying a small size (42,424 bp) and a high gene density (86.6% coding sequences). It contains 65 genes that are conserved in other mtDNAs. Although none of these genes represents a novel coding sequence among green plant mtDNAs, four of them (rps1, sdh3, sdh4, and trnL[caa]) have not been reported previously in chlorophyte mtDNAs, and two others (rpl14 and trnI[gau]) have not been identified in the streptophyte mtDNAs examined so far (land-plant mtDNAs). Phylogenetic analyses of 19 concatenated mtDNA-encoded proteins favor the hypothesis that Mesostigma represents the earliest branch of green plant evolution. Four group I introns (two in rnl and two in cox1) and three group II introns (two in nad3 and one in cox2), two of which are trans-spliced at the RNA level, reside in Mesostigma mtDNA. The insertion sites of the three group II introns are unique to this mtDNA, suggesting that trans-splicing arose independently in the Mesostigma lineage and in the Streptophyta. The few structural features that can be regarded as ancestral in Mesostigma mtDNA predict that the common ancestor of all green plants had a compact mtDNA containing a minimum of 75 genes and perhaps two group I introns. Considering that the mitochondrial genome is much larger in size in land plants than in Mesostigma, we infer that mtDNA size began to increase dramatically in the Streptophyta either during the evolution of charophyte green algae or during the transition from charophytes to land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号