首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
How do membrane proteins sense water stress?   总被引:8,自引:0,他引:8  
Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmoprotectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift-activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein-lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift-activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins.  相似文献   

2.
How do so few control so many?   总被引:15,自引:0,他引:15  
Nasmyth K 《Cell》2005,120(6):739-746
The separation of sister chromatids at the metaphase-to-anaphase transition is triggered by a protease called separase that is activated by the destruction of an inhibitory chaperone (securin). This process is mediated by a ubiquitin protein ligase called the anaphase-promoting complex or cyclosome (APC/C), along with a protein called Cdc20. It is vital that separase not be activated before every single chromosome has been aligned on the mitotic spindle. Kinetochores that have not yet attached to microtubules catalyze the sequestration of Cdc20 by an inhibitor called Mad2. Recent experiments shed important insight into how Mad2 molecules bound to centromeres through their association with a protein called Mad1 might be transferred to Cdc20 and thereby inhibit securin's destruction.  相似文献   

3.
African trypanosomiasis is endemic over much of sub-saharan Africa. But whereas domestic animals - especially cattle - often succumb to the infection, wild mammals generally show a high degree o f resistance. Many species o f wildlife living in tsetse-infested areas carry trypanosome infections, and so act as important reservoir hosts, but generally show no obvious ill-effects. How they survive the infection is an important question in understanding mechanisms o f trypanotolerance, yet relevant data are sparse and scattered. Here, Ayub Mulla and Roy Rickman review some of the previous studies to illustrate how complex the question is.  相似文献   

4.
5.
The goal of this research project was to determine the water transport behaviour of earlywood versus latewood in the trunk of 21-year-old Douglas-fir [Pseudostuga menziesii (Mirb.) Franco] trees. Specific conductivity (k(s)) and the vulnerability of xylem to embolism were measured on a single growth ring and in a subset of earlywood and latewood samples within the same ring. Earlywood/latewood ratio, trunk water potential (Psi) and relative water content (RWC) were used to predict differences in conductivities and vulnerability to embolism. Earlywood has about 11 times the k(s) of latewood, and up to 90% of the total flow occurred through the earlywood. Earlywood's vulnerability to embolism followed the same trend as that of the whole wood, with 50% loss of conductivity at -2.2 MPa (P(50)). Latewood was more vulnerable to embolism than earlywood at high Psi, but as Psi decreased, the latewood showed very little further embolism, with a P(50) <-5.0 MPa. The lowest trunk Psi estimated in the field was about -1.4 MPa, indicating that latewood and earlywood in the field experienced about 42% and 16% loss of k(s), respectively. The higher vulnerability to embolism in latewood than in earlywood at field Psi was associated with higher water storage capacity (21.8% RWC MPa(-1) versus 4.1% RWC MPa(-1), latewood and earlywood, respectively). The shape of the vulnerability curve suggests that air seeding through latewood may occur directly through pores in the margo and seal off at lower pressure than earlywood pores.  相似文献   

6.
Immune systems face a daunting control challenge. On the one hand, they need to minimize damage from pathogens, without wasting energy and resources, but on the other must avoid initiating or perpetuating autoimmune responses. Finally, because pathogens interfere with immune function, immune systems must be robust against sabotage. We describe here how these challenges are met by two immune systems, the intracellular RNA interference system and the vertebrate CD8 T-cell response. We extrapolate from these two systems to propose principles for strategically robust control.  相似文献   

7.
Rod-like bacteria maintain their cylindrical shapes with remarkable precision during growth. However, they are also capable to adapt their shapes to external forces and constraints, for example by growing into narrow or curved confinements. Despite being one of the simplest morphologies, we are still far from a full understanding of how shape is robustly regulated, and how bacteria obtain their near-perfect cylindrical shapes with excellent precision. However, recent experimental and theoretical findings suggest that cell-wall geometry and mechanical stress play important roles in regulating cell shape in rod-like bacteria. We review our current understanding of the cell wall architecture and the growth dynamics, and discuss possible candidates for regulatory cues of shape regulation in the absence or presence of external constraints. Finally, we suggest further future experimental and theoretical directions which may help to shed light on this fundamental problem.  相似文献   

8.
9.
This article emphasizes the importance of getting students to understand the ways in which polypeptides fold to form protein molecules with complex higher-ordered structures. Modern views on how this folding occurs in vitro and in the cell are summarized and set within an appropriate biological context.  相似文献   

10.
How do spores germinate?   总被引:3,自引:0,他引:3  
Spore germination, as defined as those events that result in the loss of the spore-specific properties, is an essentially biophysical process. It occurs without any need for new macromolecular synthesis, so the apparatus required is already present in the mature dormant spore. Germination in response to specific chemical nutrients requires specific receptor proteins, located at the inner membrane of the spore. After penetrating the outer layers of spore coat and cortex, germinant interacts with its receptor: one early consequence of this binding is the movement of monovalent cations from the spore core, followed by Ca2(+) and dipicolinic acid (DPA). In some species, an ion transport protein is also required for these early stages. Early events - including loss of heat resistance, ion movements and partial rehydration of the spore core - can occur without cortex hydrolysis, although the latter is required for complete core rehydration and colony formation from a spore. In Bacillus subtilis two crucial cortex lytic enzymes have been identified: one is CwlJ, which is DPA-responsive and is located at the cortex-coat junction. The second, SleB, is present both in outer layers and at the inner spore membrane, and is more resistant to wet heat than is CwlJ. Cortex hydrolysis leads to the complete rehydration of the spore core, and then enzyme activity within the spore protoplast resumes. We do not yet know what activates SleB activity in the spore, and neither do we have any information at all on how the spore coat is degraded.  相似文献   

11.
《Fungal biology》2019,123(8):558-564
Plant fungal pathogens place considerable strain on agricultural productivity and threaten global food security. In recent decades, advances in crop breeding, farming practice and the agrochemical industry have allowed crop yields to keep pace with food demand. In this opinion article, we speculate on which recent technological advances will allow us to maintain this situation into the future. We take inspiration that it is 25 y since the first plant disease resistance genes were cloned, and imagine if and how agricultural control of pathogens will be achieved by the year 2044. We examine which technologies are best poised to make the jump from lab bench to field application, and propose that future control measures will likely depend on effective integrated disease management.  相似文献   

12.
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.  相似文献   

13.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

14.
A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D.  相似文献   

15.
How do nutrients drive growth?   总被引:4,自引:0,他引:4  
Burns  Ian G.  Walker  Robin L.  Moorby  Jeff 《Plant and Soil》1997,196(2):321-325
The relationship between plant nutrient concentration and relative growth rate (RGR) was studied under non-steady state conditions using data from a new N interruption experiment with young lettuce plants grown hydroponically in the glasshouse. RGRs estimated from the fit of a versatile growth model were shown to decline curvilinearly with plant N concentration as N deficiency increased. Similar curvilinear relationships were also derived when the same model was used to reanalyse data for N, P and K interruption treatments from other experiments previously published in the literature. These results clearly indicate that the rate of remobilisation of nutrient reserves varies with the nutrient status of the plant. This contrasts with the linear relationships observed where the changes in plant N concentration occurred solely as a response to increasing plant age, or when plants were grown under steady state conditions with constant relative nutrient addition rates. These differences in the pattern of response provide strong evidence to support the hypothesis that the form of the relationship between RGR and plant nutrient concentration can vary depending upon whether a plant's external supplies or internal reserves of a particular nutrient are more limiting.  相似文献   

16.
17.
18.
Communication involves a pair of behaviours—a signal and a response—that are functionally interdependent. Consequently, the emergence of communication involves a chicken-and-egg problem: if signals and responses are dependent on one another, then how does such a relationship emerge in the first place? The empirical literature suggests two solutions to this problem: ritualization and sensory manipulation; and instances of ritualization appear to be more common. However, it is not clear from a theoretical perspective why this should be the case, nor if there are any other routes to communication. Here, we develop an analytical model to examine how communication can emerge. We show that: (i) a state of non-interaction is evolutionarily stable, and so communication will not necessarily emerge even when it is in both parties'' interest; (ii) the conditions for sensory manipulation are more stringent than for ritualization, and hence ritualization is likely to be more common; and (iii) communication can arise by a third route, when the intention to communicate can itself be communicated, but this may be limited to humans. More generally, our results demonstrate the utility of a functional approach to communication.  相似文献   

19.
How do you see CG?   总被引:4,自引:0,他引:4  
Aderem A  Hume DA 《Cell》2000,103(7):993-996
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号