首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Dopamine (DA) is produced from tyrosine by tyrosine hydroxylase (TH). A recent study has reported that DA promotes the mineralization of murine preosteoblasts. However, the role of DA in odontoblasts has not been examined. Therefore, in this investigation, we researched the expression of TH and DA in odontoblasts and the effects of DA on the differentiation of preodontoblasts (KN-3 cells). Immunostaining showed that TH and DA were intensely expressed in odontoblasts and preodontoblasts of rat incisors and molars. KN-3 cells expressed D1-like and D2-like receptors for DA. Furthermore, DA promoted odontoblastic differentiation of KN-3 cells, whereas an antagonist of D1-like receptors and a PKA signaling blocker, inhibited such differentiation. However, antagonists of D2-like receptors promoted differentiation. These results suggested that DA in preodontoblasts and odontoblasts might promote odontoblastic differentiation through D1-like receptors, but not D2-like receptors, and PKA signaling in an autocrine or paracrine manner and plays roles in dentinogenesis.  相似文献   

5.
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post-natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.  相似文献   

6.
7.
The Ret receptor tyrosine kinase is the common signaling receptor for the glial cell line-derived neurotrophic factor (GDNF) family ligands. The Met918Thr mutation leads to constitutive activation of Ret and is responsible for dominantly inherited cancer syndrome MEN2B. Previously, we found that the mice carrying the mutation (MEN2B mice) have profoundly increased tissue dopamine (DA) concentrations in the striatum as well as increased striatal levels of tyrosine hydroxylase (TH) and dopamine transporter. The aim of this study was to characterize the striatal dopaminergic neurotransmission in MEN2B mice and to clarify the mechanisms by which they compensate their over-production of DA. We found that tyrosine hydroxylase activity and DA synthesis are increased in MEN2B mice. Augmented effects of α-methyl-para-tyrosine (αMT, an inhibitor of TH) and tetrabenazine (VMAT2 blocker) on DA levels suggest that also storage of DA is increased in MEN2B mice. There was no difference in the basal extracellular DA concentrations or potassium-evoked DA release between the genotypes. The effects of cocaine and haloperidol were also similar between the genotypes as assessed by in vivo microdialysis. However, with in vivo voltammetry we found increase in stimulated DA release in MEN2B mice and detailed analysis of DA overflow showed that uptake of DA was also enhanced in MEN2B mice. Thus, our data show that enhanced synthesis of DA leading to increased storage and releasable pools in pre-synaptic terminals in MEN2B mice apparently also leads to increased DA release, which in turn is compensated by higher dopamine transporter activity.  相似文献   

8.
9.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

10.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   

11.
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate–putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, l -DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.  相似文献   

12.
Termination of dopamine neurotransmission is primarily controlled by the plasma membrane-localized dopamine transporter. In this study, we investigated how this transporter is regulated by tyrosine kinases in neuronal preparations. In rat dorsal striatal synaptosomes, inhibition of tyrosine kinases by genistein or tyrphostin 23 resulted in a rapid (5-15 min), concentration-dependent decrease in [(3)H]dopamine uptake because of a reduction in maximal [(3)H]dopamine uptake velocity and dopamine transporter cell surface expression. The reduced transporter activity was associated with a decrease in phosphorylated p44/p42 mitogen-activated protein kinases. In primary rat mesencephalic neuronal cultures, the tyrosine kinase inhibitors similarly reduced [(3)H]dopamine uptake. When cultures were serum-deprived, acute activation of tyrosine kinase-coupled TrkB receptors by 100 ng/mL brain-derived neurotrophic factor significantly increased [(3)H]dopamine uptake; the effects were complex with increased maximal velocity but reduced affinity. The facilitatory effect of brain-derived neurotrophic factor on dopamine transporter activity depended on both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Taken together, our results suggest that striatal dopamine transporter function and cell surface expression is constitutively up-regulated by tyrosine kinase activation and that brain-derived neurotrophic factor can mediate this type of rapid regulation.  相似文献   

13.
Based on sleep deprivation-produced changes of electrographic parameters of the wakefulness-sleep cycle (WSC) in rats and frogs (Rana temporaria), dynamics of activity of tyrosine hydroxylase, the key enzyme of dopamine synthesis, was studied immunohistochemically in substantia nigra and nigrostriatal pathway in rats and in striatum, paraventricular organ, and extrahypothalamic pathways in frogs. Changes in dynamics of tyrosine hydroxylase in rats and in frogs are revealed after the 6-h sleep deprivation and after 2 h of postdeprivation sleep. This allows determining the degree of participation of corticostriatal neuroregulatory and hypothalamo-pituitary neurosecretory systems and their role in regulation of WSC. Possible evolutionary peculiarities of morphofunctional differences in homoiothermal and poikilothermal animals are discussed.  相似文献   

14.
Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic system. Brain delivery of glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and restore the dopaminergic pathway in various animal models of PD. However, GDNF overexpression in the dopaminergic pathway leads to a time-dependent down-regulation of tyrosine hydroxylase (TH), a key enzyme in dopamine synthesis. In order to elucidate GDNF-mediated biochemical effects on dopaminergic neurons, we overexpressed GDNF in the intact rat striatum using a lentiviral vector-mediated gene transfer technique. Long-term GDNF overexpression led to increased GTP cyclohydrolase I (GTPCH I) activity and tetrahydrobiopterin (BH4) levels. Further, we observed a down-regulation of TH enzyme activity in morphologically intact striatal dopaminergic nerve terminals, as well as a significant decrease of dopamine levels in striatal tissue samples. These results indicate that long-term GDNF delivery is a major factor affecting dopamine biosynthesis via a direct or indirect modulation of TH and GTPCH I and further underscore the importance of assessing both GDNF dose and delivery duration prior to clinical application in order to circumvent potentially adverse pharmacological effects on the biosynthesis of dopamine.  相似文献   

15.
Dopamine (DA) content of the salivary glands in partially fed female and fed male ticks, Amblyomma hebraeum Koch (Acari: Ixodidae), was measured by high-performance liquid chromatography with electrochemical detection or by a radioenzymatic assay for catecholamines following experimental treatment. Some glands were held in vitro for up to 3 days. Other preparations (backless explants) allowed one side to be surgically denervated, the contralateral side serving as control. Normal ticks were sampled for up to 4 days post-removal from the host (rabbits). In the backless explants, there was little if any difference in DA content between denervated and control sides, even after 4 days in vitro, indicating that unilateral denervation did not eliminate the major salivary gland pool of DA. High doses of reserpine (333 g per g body weight) and 6-hydroxydopamine (1000 g per g body weight) did not significantly reduce the DA content of the salivary gland, also suggesting that only a minor component of the DA pool is within axons innervating the salivary gland. A dispersed population of cells rich in tyrosine hydroxylase immunoreactivity (an enzyme marker for catecholamine-synthesizing cells) was found in close association with the granular acini. This further suggests that the major DA pool in the salivary gland may be in cells other than the dopaminergic nerves arising from the central nervous system. © Rapid Science Ltd. 1998  相似文献   

16.
17.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.  相似文献   

18.
Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c- jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by α-methyl- dl - p -tyrosine methyl ester (α-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by α-MT, whereas α-MT and c- jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.  相似文献   

19.
Dopamine is generally accepted as a major neurotransmitter associated with light-adaptive processes in the retina. However, little is known about its precise release pattern in vivo, largely due to the lack of an unambiguous method for the determination of dopamine release. We have found that vitreal levels of dihydroxyphenylacetic acid (DOPAC) reflect the rate of dopamine release in chickens. Blocking re-uptake with nomifensine significantly lowered vitreal DOPAC and retinal dopamine, confirming the retinal origin and reliance of vitreal DOPAC on intact re-uptake mechanisms. Further, inhibition of monoamine oxidase with pargyline reduced vitreal as well as retinal DOPAC levels, confirming that the DOPAC detected is generated by monoamine oxidase. Finally, we found that DOPAC diffused freely into and out of isolated vitreous bodies and we found the vitreous to be metabolically inert with respect to DOPAC, supporting the idea that vitreal levels of DOPAC are consequential to the retinal metabolism of dopamine. Exposure to light, which is known to increase retinal dopamine release, readily increased vitreal DOPAC levels. The accumulation of DOPAC in the vitreous over 6 h light fitted a mathematical model of DOPAC accumulation based on zero-order influx (proportional to dopamine release rates) and diffusion driven, first-order efflux.  相似文献   

20.
Tyrosine hydroxylase (TH) protein, phosphorylated at serine-40, serine-31 and serine-19, and enzyme catalytic activity were compared under basal conditions and in activated nigrostriatal dopamine (NSDA) neurons of wild-type and homozygous alpha-synuclein knockout mice. Mice were injected with the D2 antagonist raclopride to stimulate NSDA neuronal activity in the presence or absence of supplemental l-tyrosine. There was no difference in phosphorylated TH levels or TH catalytic activity between wild-type and alpha-synuclein knockout mice under basal conditions or following raclopride-induced acceleration of NSDA activity. In wild-type animals, tyrosine administration potentiated the raclopride-induced increase in phosphorylated TH and enzyme activity. However, tyrosine administration did not enhance phosphorylated TH levels or enzyme catalytic activity in raclopride-stimulated NSDA neurons in alpha-synuclein knockout mice. These findings suggest that alpha-synuclein plays a role in the ability of tyrosine to either enhance TH phosphorylation or hinder TH inactivation during accelerated neuronal activity. The present study supports the hypothesis that alpha-synuclein functions as a molecular chaperone protein that regulates the phosphorylation state of TH in a substrate and activity-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号