首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The purpose of this study was to evaluate the effects of eight single nucleotide polymorphisms (SNP), previously associated with meat and milk quality traits in cattle, in a population of 443 commercial Aberdeen Angus-cross beef cattle. The eight SNP, which were located within five genes: μ-calpain (CAPN1), calpastatin (CAST), leptin (LEP), growth hormone receptor (GHR) and acylCoA:diacylglycerol acyltransferase 1 (DGAT1), are included in various commercial tests for tenderness, fatness, carcass composition and milk yield/quality.

Methods

A total of 27 traits were examined, 19 relating to carcass quality, such as carcass weight and fatness, one mechanical measure of tenderness, and the remaining seven were sensory traits, such as flavour and tenderness, assessed by a taste panel.

Results

An SNP in the CAPN1 gene, CAPN316, was significantly associated with tenderness measured by both the tenderometer and the taste panel as well as the weight of the hindquarter, where animals inheriting the CC genotype had more tender meat and heavier hindquarters. An SNP in the leptin gene, UASMS2, significantly affected overall liking, where animals with the TT genotype were assigned higher scores by the panellists. The SNP in the GHR gene was significantly associated with odour, where animals inheriting the AA genotype produced steaks with an intense odour when compared with the other genotypes. Finally, the SNP in the DGAT1 gene was associated with sirloin weight after maturation and fat depth surrounding the sirloin, with animals inheriting the AA genotype having heavier sirloins and more fat.

Conclusion

The results of this study confirm some previously documented associations. Furthermore, novel associations have been identified which, following validation in other populations, could be incorporated into breeding programmes to improve meat quality.  相似文献   

2.
Kim Y  Ryu J  Woo J  Kim JB  Kim CY  Lee C 《Animal genetics》2011,42(4):361-365
Genetic associations of nucleotide sequence variants with carcass traits in beef cattle were investigated using a genome-wide single nucleotide polymorphism (SNP) assay. Three hundred and thirteen Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,129 SNPs from 311 animals were analysed for each carcass phenotype after filtering by quality assurance. Five sequence markers were associated with one of the meat quantity or quality traits; rs109593638 on chromosome 3 with marbling score, rs109821175 on chromosome 11 and rs110862496 on chromosome 13 with backfat thickness (BFT), and rs110228023 on chromosome 6 and rs110201414 on chromosome 16 with eye muscle area (EMA) (P < 1.27 × 10(-6) , Bonferonni P < 0.05). The ss96319521 SNP, located within a gene with functions of muscle development, dishevelled homolog 1 (DVL1), would be a desirable candidate marker. Individuals with genotype CC at this gene appeared to have increased both EMA and carcass weight. Fine-mapping would be required to refine each of the five association signals shown in the current study for future application in marker-assisted selection for genetic improvement of beef quality and quantity.  相似文献   

3.
DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.  相似文献   

4.
This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon’s region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.  相似文献   

5.
Hormone-sensitive lipase (HSL) is responsible for the decomposition of triglycerides in adipose tissue to release free fatty acids, and it is a key rate-limiting enzyme in the regulation of adipose tissue deposition and decomposition. The objective of this study was to evaluate the association between novel SNPs in the coding region of bovine HSL gene and carcass and meat quality traits of Chinese Simmental-cross steers. Two novel SNPs were genotyped and the 47 traits of carcass and meat quality traits were measured in the population studied. Statistical analysis revealed that the SNPs of HSL gene were associated with the carcass and meat quality traits. The individuals with TT genotypes of E1-276C>T showed significant higher dressing percentage, net meat rate, hind legs circumference, fat coverage rate, mesenteric fat and kidney fat (p < 0.05). E8-51C>T (P17S) also showed a significant association with the pH of beef and fatty acids content in Chinese Simmental cattle (p < 0.01). Our findings indicated that polymorphisms in HSL might be one of important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.  相似文献   

6.
Leptin is a hormone affecting the regulation of body composition, energy balance, and meat quality in mammals. The objective of this study was to evaluate the association of novel single nucleotide polymorphisms in coding region for leptin gene with carcass and meat quality traits of Chinese Simmental-cross steers. Two SNPs (E2-169 T > C and E3-299 T > A) were genotyped on 135 crossbred bulls. The 45 traits being measured included dressing percentage, dressed weight, marbling score, muscle color score, backfat thickness, fatty acid content, etc. Statistical analysis revealed that two SNPs in the exon of leptin gene were associated with the carcass and meat quality traits. The C-bearing genotypes (CC or TC) of E2-169 T > C (C57R) showed higher dressed weight, thickness of loin, MCS, FCS, intramuscular fat content, and polyunsaturated fatty acid content (P < 0.05). E3-299  > A(S100T) also showed a significant association with the carcass traits (dressing percentage, living QIB) and fatty acid content in Simmental-cross steers(P < 0.05). Our findings suggested that polymorphisms in leptin might be one of the important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.  相似文献   

7.
8.
A key concern in beef production is how to improve carcass and meat quality traits. Identifying the genomic regions and biological pathways that contribute to explaining variability in these traits is of great importance for selection purposes. In this study, genome wide-association (GWAS) and pathway-based analyses of carcass traits (age at slaughter (AS), carcass weight (CW), carcass daily gain (CDG), conformation score and rib-eye muscle area) and meat quality traits (pH, Warner-Bratzler shear force, purge loss, cooking loss and colour parameters (lightness, redness, yellowness, chroma, hue)) were conducted using genotype data from the ‘GeneSeek Genomic Profiler Bovine LD’ array in a cohort of 1166 double-muscled Piemontese beef cattle. The genome wide-association analysis was based on the GRAMMAR-GC approach and identified 37 significant single nucleotide polymorphisms (SNPs), which were associated with 12 traits (P<5 × 10−5). In particular, 14 SNPs associated with CW, CDG and AS were located at 38.57 to 38.94 Mb on Bos taurus autosome 6 and mapped within four genes, that is, Leucine Aminopeptidase 3, Family with Sequence Similarity 184 Member B, Non-SMC Condensin I Complex Subunit G and Ligand-Dependent Nuclear Receptor Corepressor-Like. Strong pairwise linkage disequilibrium was found in this region. For meat quality traits, most associations were 1 SNP per trait, except for a signal on BTA25 (at ~11.96 Mb), which was significant for four of the five meat colour parameters assessed. Gene-set enrichment analyses yielded significant results for six traits (right-sided hypergeometric test, false discovery rate <0.05). In particular, several pathways related to transmembrane transport (i.e., oxygen, calcium, ion and cation) were overrepresented for meat colour parameters. The results obtained provide useful information for genomic selection for beef production and quality in the Piemontese breed.  相似文献   

9.
The objective of this study was to identify genetic polymorphisms of the CACNA2D1 gene and to analyze associations between SNPs and carcass and meat quality traits in cattle. Through PCR-RFLP and DNA sequencing methods, a new allelic variant corresponding to the A → G mutation (aspartic to glycine amino acid replacement) of the bovine CACNA2D1 gene was detected. Two alleles and three genotypes (AA, AG, and GG) were defined. Genetic character indicated that the A526745G locus showed moderate polymorphism and was in Hardy–Weinberg equilibrium. Gene-specific SNP marker association analysis showed that the A526745G mutant was significantly associated with carcass weight, dressing percentage, meat percentage, and backfat thickness. The results add new evidence that CACNA2D1 is an important candidate gene for the selection of carcass and meat quality traits in the cattle industry.  相似文献   

10.
Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10?6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.  相似文献   

11.
The aim of this study was to determine whether single nucleotide polymorphisms (SNP) in the beef cattle adipocyte fatty-acid binding protein 3 and 4 (FABP3 and FABP4) genes are associated with carcass weight (CW) and back fat thickness (BF) of beef cattle. By direct DNA sequencing in 24 unrelated Korean native cattle, we identified 20 SNPs in FABP3 and FABP4. Among them, 10 polymorphic sites were selected for genotyping in our beef cattle. We performed SNP, haplotype and linkage disequilibrium studies on 419 Korean native cattle with the 10 SNPs in the FABP genes. Statistical analysis revealed that 220AG (I74V) and 348+303TC polymorphisms in FABP4 showed putative associations with BF traits (P=0.02 and 0.01, respectively). Our findings suggest that the polymorphisms in FABP4 may play a role in determining one of the important genetic factors that influence BF in beef cattle.  相似文献   

12.
An 11-bp deletion in the bovine myostatin ( MSTN ) gene was identified as the causative mutation for the double-muscling phenotype in Belgian Blue and Asturiana cattle. More recently, this mutation was also identified in the South Devon breed of cattle, in which it has been found to be associated with a general increase in muscle mass. The present study found that the mutant allele was also segregating in a commercial population of Scottish Aberdeen Angus beef cattle. The mutation was found at a low frequency (0.04) with no animals homozygous for the mutation in the sample population (536 animals). The effects of this mutation on various carcass traits of economic interest were then tested. We found that the mutation significantly increased carcass weight, sirloin weight, hindquarter weight, muscle conformation score and eye muscle area, but had no effect on the fat traits.  相似文献   

13.
Recent advances in high-throughput genotyping technologies have provided the opportunity to map genes using associations between complex traits and markers. Genome-wide association studies (GWAS) based on either a single marker or haplotype have identified genetic variants and underlying genetic mechanisms of quantitative traits. Prompted by the achievements of studies examining economic traits in cattle and to verify the consistency of these two methods using real data, the current study was conducted to construct the haplotype structure in the bovine genome and to detect relevant genes genuinely affecting a carcass trait and a meat quality trait. Using the Illumina BovineHD BeadChip, 942 young bulls with genotyping data were introduced as a reference population to identify the genes in the beef cattle genome significantly associated with foreshank weight and triglyceride levels. In total, 92,553 haplotype blocks were detected in the genome. The regions of high linkage disequilibrium extended up to approximately 200 kb, and the size of haplotype blocks ranged from 22 bp to 199,266 bp. Additionally, the individual SNP analysis and the haplotype-based analysis detected similar regions and common SNPs for these two representative traits. A total of 12 and 7 SNPs in the bovine genome were significantly associated with foreshank weight and triglyceride levels, respectively. By comparison, 4 and 5 haplotype blocks containing the majority of significant SNPs were strongly associated with foreshank weight and triglyceride levels, respectively. In addition, 36 SNPs with high linkage disequilibrium were detected in the GNAQ gene, a potential hotspot that may play a crucial role for regulating carcass trait components.  相似文献   

14.
杨彦杰  昝林森  王洪宝 《遗传》2009,31(10):1006-1012
利用PCR-SSCP结合测序技术对405头24月龄秦川牛脂联素基因SNPs位点进行检测, 运用SPSS统计程序中的GLM模型将检测到的SNPs位点与部分胴体及肉质性状的相关性进行了分析。结果检测到AA、AB、BB、CC、CD 5种基因型, 其中AB、BB型个体在脂联素基因第2外显子 64 bp处发现G→C突变, CD型个体第3外显子50 bp处发现C→T的突变, G→C导致谷氨酸(GGA)转化为谷氨酰胺(GCA), C→T导致丝氨酸(TCA)转化为亮氨酸(TTA)。方差分析结果表明: AA型个体的宰前活重、胴体重、眼肌面积显著高于BB型(P<0.05), 而在胴体腿臀围方面, AA型个体极显著高于AB型、BB型个体(P<0.01)。CD型个体的宰前活重、胴体腿臀围、皮下脂肪厚、背膘厚、嫩度都显著优于CC型个体(P<0.05)。脂联素基因该位点可能是影响秦川牛胴体及肉质性状的主效QTL或与之紧密连锁, 可作为秦川牛高档牛肉生产的候选分子标记。  相似文献   

15.
Ultrasound technology was used to measure live animal meat traits instead of true carcass meat traits for beef production and cattle breeding by an increasing number of institutions. In this study, we analyzed the association between genetic polymorphisms of proopiomelanocortin (POMC) and ultrasound measurement traits in Chinese cattle. Using direct DNA sequencing in 322 individuals of 7 different cattle subpopulation, 7 SNPs were identified for genotyping within 790 bp region of intron 2 and exon 3 of POMC. 6586 T>G in intron 2 and 6769 C>T and 7216 C>T in exon 3 were significantly associated with ultrasound backfat thickness (UBF) (P < 0.05) and ultrasound loin muscle area (ULMA) (P < 0.01) in the total population; 6694 C>T, 6706 T>C, 6796 C>T and 6810 C>T in exon 3 were significantly associated with ULMA (P < 0.0001) in the total population. These results clearly suggest that these SNPs of POMC be benefit for selection of individuals with good quality meat in Chinese cattle breeding program. Following validation in other populations and breeds, these markers could be incorporated into breeding programs to increase the rate of improvement in carcass and meat quality traits.  相似文献   

16.
T. Chang  J. Xia  L. Xu  X. Wang  B. Zhu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2018,49(4):312-316
A genome‐wide association study (GWAS) was conducted for two carcass traits in Chinese Simmental beef cattle. The experimental population consisted of 1301 individuals genotyped with the Illumina BovineHD SNP BeadChip (770K). After quality control, 671 990 SNPs and 1217 individuals were retained for the GWAS. The phenotypic traits included carcass weight and bone weight, which were measured after the cattle were slaughtered at 16 to 18 months of age. Three statistical models—a fixed polygene model, a random polygene model and a composite interval mapping polygene model—were used for the GWAS. The genome‐wide significance threshold after Bonferroni correction was 7.44E‐08 (= 0.05/671 990). In this study, we detected eight and seven SNPs significantly associated with carcass weight and bone weight respectively. In total, 11 candidate genes were identified within or close to these significant SNPs. Of these, we found several novel candidate genes, including PBX1, GCNT4, ALDH1A2, LCORL and WDFY3, to be associated with carcass weight and bone weight in Chinese Simmental beef cattle, and their functional roles need to be verified in further studies.  相似文献   

17.
18.
19.

Background

Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation.

Results

Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway.

Conclusions

A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-837) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号