首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of myosin II in glioma invasion of the brain   总被引:1,自引:0,他引:1  
The ability of gliomas to invade the brain limits the efficacy of standard therapies. In this study, we have examined glioma migration in living brain tissue by using two novel in vivo model systems. Within the brain, glioma cells migrate like nontransformed, neural progenitor cells-extending a prominent leading cytoplasmic process followed by a burst of forward movement by the cell body that requires myosin II. In contrast, on a two-dimensional surface, glioma cells migrate more like fibroblasts, and they do not require myosin II to move. To explain this phenomenon, we studied glioma migration through a series of synthetic membranes with defined pore sizes. Our results demonstrate that the A and B isoforms of myosin II are specifically required when a glioma cell has to squeeze through pores smaller than its nuclear diameter. They support a model in which the neural progenitor-like mode of glioma invasion and the requirement for myosin II represent an adaptation needed to move within the brain, which has a submicrometer effective pore size. Furthermore, the absolute requirement for myosin II in brain invasion underscores the importance of this molecular motor as a potential target for new anti-invasive therapies to treat malignant brain tumors.  相似文献   

2.
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumors. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM), which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic- ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this Commentary & View, we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.Key words: brain tumor, blood coagulation, hypoxia, MAP kinase, cancer stem cells, tumor invasion  相似文献   

3.
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumours. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM) which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic-ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this point of view article we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.  相似文献   

4.
The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue.  相似文献   

5.
Hu X  Holland EC 《Mutation research》2005,576(1-2):54-65
Gliomas are the most common primary tumors that arise from glial cells and their precursors in the central nervous system. Most of the genetic alterations identified in human gliomas result in signal transduction abnormalities or disruption of cell cycle arrest pathways. Over the past years, several mouse glioma models have been generated based on human genetic abnormalities and the induced gliomas exhibit histological similarities to their human counterparts. There is emerging evidence suggesting that an oncogenic signaling initiating tumorigenesis is also required for tumor maintenance, these glioma models can be used to further characterize the mechanisms of oncogenic signaling in tumor formation, as well as identify molecular targets in preclinical trials.  相似文献   

6.
Structural remodeling of the extracellular matrix is a well-established process associated with tumor growth and metastasis. Tumor and stromal cells that compose the tumor mass function cooperatively to promote the malignant phenotype in part by physically interacting with intact and structurally altered matrix proteins. To this end, collagen represents the most abundant component of the extracellular matrix and is known to control the behavior of histologically distinct tumor types as well as a diversity of stromal cells. Although a significant molecular understanding has been established concerning how cellular interactions with intact collagen govern signaling pathways that control tumor progression, considerably less is known concerning how interactions with cryptic or hidden regions within remodeled collagen may selectively alter signaling cascades, or whether inhibition of these cryptic signaling pathways may represent clinically effective therapeutic strategies. Here, we review the emerging evidence concerning the possible mechanisms for the selective generation of cryptic or hidden elements within collagen and their potential cell surface receptors that may facilitate signal transduction. We discuss the concept that cellular communication links between cell surface receptors and these cryptic collagen elements may serve as functional signaling hubs that coordinate multiple signaling pathways operating within both tumor and stromal cells. Finally, we provide examples to help illustrate the possibility that direct targeting of these unique cryptic signaling hubs may lead to the development of more effective therapeutic strategies to control tumor growth and metastasis.  相似文献   

7.
Glioblastoma is the most common and lethal primary intracranial tumor. As the key regulator of tumor cell volume, sodium-potassium-chloride cotransporter 1 (NKCC1) expression increases along with the malignancy of the glioma, and NKCC1 has been implicated in glioblastoma invasion. However, little is known about the role of NKCC1 in the epithelial-mesenchymal transition-like process in gliomas. We noticed that aberrantly elevated expression of NKCC1 leads to changes in the shape, polarity, and adhesion of cells in glioma. Here, we investigated whether NKCC1 promotes an epithelial–mesenchymal transition (EMT)-like process in gliomas via the RhoA and Rac1 signaling pathways. Pharmacological inhibition and knockdown of NKCC1 both decrease the expressions of mesenchymal markers, such as N-cadherin, vimentin, and snail, whereas these treatments increase the expression of the epithelial marker E-cadherin. These findings indicate that NKCC1 promotes an EMT-like process in gliomas. The underlying mechanism is the facilitation of the binding of Rac1 and RhoA to GTP by NKCC1, which results in a significant enhancement of the EMT-like process. Specific inhibition or knockdown of NKCC1 both attenuate activated Rac1 and RhoA, and the pharmacological inhibitions of Rac1 and RhoA both impair the invasion and migration abilities of gliomas. Furthermore, we illustrated that NKCC1 knockdown abolished the dissemination and spread of glioma cells in a nude mouse intracranial model. These findings suggest that elevated NKCC1 activity acts in the regulation of an EMT-like process in gliomas, and thus provides a novel therapeutic strategy for targeting the invasiveness of gliomas, which might help to inhibit the spread of malignant intracranial tumors.  相似文献   

8.
Inhibition of epidermal growth factor receptor (EGFR) signaling sensitizes human malignant glioma cells to death ligand-induced apoptosis. However, tumor cells may compensate the loss of EGFR signaling by activation of the type 1 insulin-like growth factor receptor (IGF-1R). We here report that antagonism of the IGF-1R with the small-molecule inhibitor AG1024 in combination with inhibitors of the EGFR synergistically sensitizes human malignant glioma cells to CD95L-induced apoptosis. This cell death is p53-independent, but requires caspase 8 activity. The levels of the receptor, CD95, are not altered by the inhibitors alone or in combination. Analysis of the downstream signaling pathways reveals synergistic inhibition of ribosomal protein S6 phosphorylation by inhibitor co-treatment, suggesting an involvement of the mammalian target of rapamycin pathway. These findings suggest that adding inhibitors of IGF-1R may be a strategy to overcome escape from the anti-apoptotic effects of EGFR inhibition in malignant gliomas.  相似文献   

9.
Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival. Epidermal growth factor receptor (EGFR) and c-Met, two well-known receptor kinases, are coexpressed in multiple cancers including hGBM, corroborating that their downstream signaling pathways enhance a malignant phenotype. The integration of c-Met and EGFR signaling in cancer cells indicates that treatment regimens designed to target both receptor pathways simultaneously could prove effective, though resistance to tyrosine kinase inhibitors continues to be a substantial obstacle. In the present study, we analyzed the antitumor efficacy of EGFR inhibitors erlotinib and gefitinib and c-Met inhibitor PHA-665752, along with their respective small hairpin RNAs (shRNAs) alone or in combination with human umbilical cord blood stem cells (hUCBSCs), in glioma cell lines and in animal xenograft models. We also measured the effect of dual inhibition of EGFR/c-Met pathways on invasion and wound healing. Combination treatments of hUCBSC with tyrosine kinase inhibitors significantly inhibited invasion and wound healing in U251 and 5310 cell lines, thereby indicating the role of hUCBSC in inhibition of RTK-driven cell behavior. Further, the EGFR and c-Met localization in glioma cells and hGBM clinical specimens indicated that a possible cross talk exists between EGFR and c-Met signaling pathway.  相似文献   

10.
An unexpected role for ion channels in brain tumor metastasis   总被引:2,自引:0,他引:2  
Over the past two decades it has become apparent that essentially all living cells express voltage-activated ion channels. While the role of ion channels for electrical signaling between excitable cells is well known, their function in non-excitable cells is somewhat enigmatic. Research on cancer cells suggests that certain ion channels, K+ channels in particular, may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. An unsuspected role for K+ and Cl(-) channels has now been documented for primary brain tumors, glioma, where the concerted activity of these channels promotes cell invasion and the formation of brain metastasis. Specifically, Ca2+-activated K+ (BK) channels colocalize with ClC-3 Cl(-) channels to the invading processes of these tumor cells. Upon a rise in intracellular Ca2+, these channels activate and release K+ and Cl(-) ions together with obligated water causing a rapid shrinkage of the leading process. This in turn facilitates the invasion of the cell into the narrow and tortuous extracellular brain spaces. The NKCC1 cotransporter accumulates intracellular Cl(-) to unusually high concentrations, thereby establishing an outward directed gradient for Cl(-) ions. This allows glioma cells to utilize Cl(-) as an osmotically active anion during invasion. Importantly, the inhibition of Cl(-) channels retards cell volume changes, and, in turn, compromises tumor cell invasion. These findings have led to the clinical evaluation of a Cl(-) channel blocking peptide, chlorotoxin, in patients with malignant glioma. Data from this clinical trial shows remarkable tumor selectivity for chlorotoxin. The experimental therapeutic was well tolerated and is now evaluated in a multi-center phase II clinical trial. A similar role for Cl(-) and K+ channels is suspected in other metastatic cancers, and lessons learned from studies of gliomas may pave the way towards the development of novel therapeutics targeting ion channels.  相似文献   

11.
Hepatocyte growth factor (HGF) induces invasive growth, a biological program that confers tumor cells the capability to invade and metastasize by integrating cell proliferation, motility, morphogenesis, and survival. We here demonstrate that HGFR activation promotes survival of colorectal carcinoma (CRC) cells exposed to conditions that mimic those met during tumor progression, i.e. nutrient deprivation or substrate detachment, and following chemotherapeutic treatment. In all these conditions, a sustained activation of p38 MAPK delivers a main death signal that is overcome by cell treatment with HGF. HGF-driven survival requires the engagement of the PI3K/Akt/mTOR/p70S6K and ERK MAPK transduction pathways. Abrogation of p38 MAPK activity prevents CRC cell apoptosis also when these transduction pathways are inhibited, and treatment with HGF further increases survival. Engagement of these signaling cascades is also needed for HGF to induce CRC cell scattering, morphogenesis, motility and invasion. Activation of p38 MAPK signaling is therefore a main apoptotic switch for CRC cells in the stressful conditions encountered during tumor progression. Conversely, HGF orchestrates several biochemical pathways, which allow cell survival in these same conditions and promote the biological responses required for tumor invasive growth. Both p38 MAPK and HGF/HGFR signaling constitute potential molecular targets for inhibiting colorectal carcinogenesis.  相似文献   

12.
13.
Gliomas are the most common primary malignant brain tumor in adults. Although these tumors are aggressive and frequently lethal, there are currently few therapeutic approaches available to prolong patient survival. MicroRNAs play important roles in regulating the expression of genes that control diverse cellular processes. Here, we investigated the expression and function of miR-139–3p in gliomas using clinical specimens, cultured cells, and a mouse xenograft tumor model. We found that miR-139–3p expression is markedly lower in human glioma tissues than in normal brain tissues. We identified melanoma differentiation-associated gene-9 (MDA-9)/syntenin, an adaptor protein implicated in tumor metastasis, as a novel direct target of miR-139–3p and showed that syntenin mRNA and miR-139–3p levels were inversely correlated in clinical specimens (r?=??0.6817, P?=?0.0002). Overexpression of miR-139–3p in human glioma cell lines inhibited cell proliferation, migration, and invasion, and these effects were rescued by co-transfection with syntenin. Our results indicate that miR-139–3p plays a significant role in controlling behaviors associated with the malignant progression of gliomas, and we identify the miR-139-3p–syntenin axis as a potential therapeutic target for glioma.  相似文献   

14.
Pan  Meichen  Shi  Jingren  Yin  Shangqi  Meng  Huan  He  Chaonan  Wang  Yajie 《Neurochemical research》2021,46(7):1737-1746

Glioma is the most frequent primary malignant brain tumor, which is characterized by high incidence and mortality, with a poor prognosis. Numerous studies have revealed the abnormal expression of long non-coding RNAs in gliomas. This study explored the effects and potential mechanism of LINC00663 in glioma. The LINC00663 levels and their prognostic values were analyzed from the GEO databases using bioinformatics. Also, LINC00663 expression in tissue samples and cell lines was measured using qRT-PCR. The roles of LINC00663 in glioma were confirmed using CCK8, EdU assay as well as Transwell tests. Moreover, the influences of LINC00663 on the AKT/mTOR signal cascades were detected using western blotting assay. LINC00663 expression was higher in both glioma tissues and cell lines than that in the normal brain tissues and human astrocytes. High expression of LINC00663 led to the low overall survival rate of patients with glioma. LINC00663 knockdown notably restrained cell proliferation, migration, and invasion abilities by decreasing the activation of AKT and mTOR. This study indicated that LINC00663 might have a cancer-promoting role in accelerating glioma development and progression through regulating AKT/mTOR pathway.

  相似文献   

15.
The ability of a cell to invade its surroundings is an important hallmark of malignant tumors and results from aberrant cell signaling mechanisms. The signal transduction that leads to tumor invasion can be broken down into major pathways. Even though the pathway systems are distinct in themselves, none of these pathways operate independently when it comes to transmitting signals that culminate in an invasive phenotype. That is, the malignant change in one receptor not only leads to malignant changes directly downstream but can also affect the molecules of many other pathways. Three major pathway systems involved in tumor invasion are discussed in this review: the integrin system, the insulin-like growth factor system, and the Rho family GTPases. Here we see that although the individual signaling systems can each contribute to invasion, each system is networked to others and should not be considered isolated. Each system is first reviewed as independent contributors to an invasive phenotype and then discussed in the context of interacting pathways that collectively result in tumor invasion.  相似文献   

16.
The multifunctional signaling protein p75 neurotrophin receptor (p75NTR) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here, we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75NTR is required for p75NTR-mediated glioma invasion, and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75NTR or treatment of animals bearing p75NTR-positive intracranial tumors with clinically applicable γ-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly, proteolytic processing of p75NTR was observed in p75NTR-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75NTR as a therapeutic target, suggesting that γ-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.  相似文献   

17.
18.
A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we show that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we show that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 coimmunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.  相似文献   

19.
The tumor vasculature is essential for tumor growth and survival and is a key target for anticancer therapy. Glioblastoma multiforme, the most malignant form of brain tumor, is highly vascular and contains abnormal vessels, unlike blood vessels in normal brain. Previously, we showed that primary cultures of human brain endothelial cells, derived from blood vessels of malignant glioma tissues (TuBEC), are physiologically and functionally different from endothelial cells derived from nonmalignant brain tissues (BEC) and are substantially more resistant to apoptosis. Resistance of TuBEC to a wide range of current anticancer drugs has significant clinical consequences as it represents a major obstacle toward eradication of residual brain tumor. We report here that the endoplasmic reticulum chaperone GRP78/BiP is generally highly elevated in the vasculature derived from human glioma specimens, both in situ in tissue and in vitro in primary cell cultures, compared with minimal GRP78 expression in normal brain tissues and blood vessels. Interestingly, TuBEC constitutively overexpress GRP78 without concomitant induction of other major unfolded protein response targets. Resistance of TuBEC to chemotherapeutic agents such as CPT-11, etoposide, and temozolomide can be overcome by knockdown of GRP78 using small interfering RNA or chemical inhibition of its catalytic site. Conversely, overexpression of GRP78 in BEC rendered these cells resistant to drug treatments. Our findings provide the proof of principle that targeting GRP78 will sensitize the tumor vasculature to chemotherapeutic drugs, thus enhancing the efficacy of these drugs in combination therapy for glioma treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号