首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The effects of salt stress on endophytic prokaryotic communities in plants are largely unknown, and the distribution patterns of bacterial and archaeal endophytes in different tissues of a plant species are rarely compared. We investigated the endophytic bacterial and archaeal communities in roots, stems and leaves of the common reed, Phragmites australis, collected from three tidal zones along a salinity gradient, using terminal restriction fragment (T-RF) length polymorphism analysis of the 16S rRNA genes. The results showed that the bacterial diversity in the roots was significantly higher than that in the leaves, whereas similar archaeal diversity was revealed for either plant tissues or tidal zones. Network analysis revealed that T-RFs were grouped largely by tissue, and the major groups were generally linked by a few common T-RFs. Unique T-RFs in roots were mainly present in plants growing in the supratidal zone, but unique T-RFs in stems and leaves were mainly present in those from the middle and high tidal zones. Non-metric multidimensional scaling ordination and analysis of similarity revealed that bacterial communities were significantly different among tissues (P < 0.05), but similar among tidal zones (P = 0.49). However, the archaeal communities differed among tidal zones (P < 0.05), but were similar among tissues (P = 0.89). This study indicates that: (1) the endophytic archaeal communities are influenced more significantly than the endophytic bacterial communities by soil salinity, and (2) the differential distribution patterns of bacterial and archaeal endophytes in plant tissues along a salinity gradient imply that these two groups play different roles in coastal hydrophytes.  相似文献   

2.
Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal areas in Tae-An, Chungnam Province, were analyzed using a culture-dependent approach. A total of 212 bacteria were isolated from the root and rhizosphere samples of the two plants, and subjected to further analysis. Based on the analysis of the 16S rDNA sequences, all the bacterial isolates were classified into six major phyla of the domain Bacteria. Significant differences were observed between the two plant species, and also between the rhizospheric and root endophytic communities. The isolates from the rhizosphere of the two plant species were assigned to 27 different established genera, and the root endophytic bacteria were assigned to 21. Members of the phylum Gammaproteobacteria, notably the Pseudomonas species, comprised the majority of both the rhizospheric and endophytic bacteria, followed by members of Bacteroidetes and Firmicutes in the rhizosphere and Alphaproteobacteria and Bacteroidetes in the root. A number of isolates were recognized as potentially novel bacterial taxa. Fifteen out of 27 bacterial genera were commonly found in the rhizosphere of both plants, which was comparable to 3 out of 21 common genera in the root, implying the host specificity for endophytic populations. This study of the diversity of culturable rhizospheric and endophytic bacteria has provided the basis for further investigation aimed at the selection of microbes for the facilitation of plant growth.  相似文献   

3.
Glehnia littoralis is an endangered medicinal plant growing in the coastal ecological environment and plays an important role in coastal ecosystems. The endophytes in the plant have a significant role in promoting plant growth and enhancing plant stress resistance. However, the endophytic bacterial structure associated with halophyte G. littoralis is still not revealed. In this project, the construction and diversity of endophytic bacterial consortium associated with different tissues of G. littoralis were illustrated with high throughput sequencing of the V3-V4 region of the bacterial 16S rRNA. The results resolved that the diversity and richness of endophytic bacteria were significantly higher in root than in leaf and stem. The operational taxonomic units (OTU) analysis demonstrated that the Actinobacteria and Proteobacteria were dominant in all the samples at the phylum level, and Pseudomonas, Bacillus, Rhizobium were the dominant genera. Our results unraveled that the bacterial communities differed among different tissues of G. littoralis. Endophytic bacterial communities in leaf and stem shared more similarity than that in the root. Furthermore, the difference of bacteria community and structure among different tissues were also detected by principal coordinate analysis. Taken altogether, we can conclude that the bacterial communities of different tissues are unique, which could facilitate understanding the diversity of endophytic bacteria in G. littoralis.Key words: Glehnia littoralis, halophyte, endophytic bacteria, diversity, Illumina sequencing  相似文献   

4.
Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.  相似文献   

5.
种子内生菌增强宿主植物重金属抗性的功能机制研究进展   总被引:1,自引:0,他引:1  
种子是植物的繁殖器官,其内定殖有一定数量的内生菌,种子内生菌通过垂直传播成为新生植物组织内最早定殖的微生物,对连续几代植物内生菌群落的形成起着决定性作用,并在植物抗逆方面发挥着重要作用.本文对种子内生菌与宿主植物重金属抗性之间的关系及其功能机制进行综述,并对下一步研究方向予以展望.  相似文献   

6.
Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.  相似文献   

7.
Experiments were designed to evaluate the effectiveness of several methods for delivering 15 endophytic bacteria into cotton stem and root tissues. The delivery methods included stab-inoculation of bacteria into stems, soaking seeds in bacterial suspensions, methyl cellulose seed coating, foliar spray, bacteria-impregnated granules applied in-furrow, vacuum infiltration and pruned-root dip. The success of delivery was gaged by recovery of the bacteria from internal plant tissues 2 weeks after the plants had been grown in a glasshouse potting mix. Following stab-inoculation into stems or radicles, 10 of the bacterial endophytes which previously exhibited biological control against fusarium wilt of cotton were successfully re-isolated from 50% of the plants inoculated; however, this method was labor-intensive, involved wounding the plant and sometimes reduced plant growth. Four of the other methods established from six to eight of the 15 strains, and, with some strains, all methods effectively established endophytic bacteria, based on re-isolation of strains from internal tissues 2 weeks after inoculation. A method was developed which allowed more convenient isolation of endophytes from a large number of plants. The results suggest that introduction of beneficial endophytic strains into cotton plants could be accomplished by practical methods chosen specifically for each strain.  相似文献   

8.
Adams  Pamela D.  Kloepper  Joseph W. 《Plant and Soil》2002,240(1):181-189
The purpose of this study was to determine if populations of indigenous bacterial endophytes in seed, stem and root tissue of cotton seedlings are influenced by host genotype. Growth chamber and field experiments were conducted to test the hypothesis that host genotype has an effect on endophytic bacterial populations in seed tissues and the developing cotton seedling. Initially, population densities of bacteria within seed of nine cotton cultivars were very low (i.e., 10 2.0 colony forming units seed–1). However, after 4 days growth on water agar, population densities within developing radicles increased significantly (log10 2–5 colony forming units) and significant cultivar differences were found. Significant cultivar differences occurred for populations of endophytic bacteria and the composition of bacterial functional groups differed among cultivars in field-grown seedlings at 5, 8, and 15 days after planting. Differences in the ranking of cultivars occurred for endophytic populations recovered from seed and aseptically and field-grown radicle and seedling tissues. These results suggest that whether originating from seed or from soil, cotton plants are capable of immediately establishing a carrying capacity for communities of endophytic bacteria following seed germination. During germination and development of the seedling, there are genetic and possible morphological/physiological effects that contribute to significant differences in colonization of bacterial endophytes among cotton cultivars.  相似文献   

9.
Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.  相似文献   

10.
Recent studies have revealed that some bacteria can inhabit plant seeds, and they are likely founders of the bacterial community in the rhizosphere of or inside plants at the early developmental stage. Given that the seedling establishment is a critical fitness component of weedy plant species, the effects of seed endophytic bacteria (SEB) on the seedling performance are of particular interest in weed ecology. Here, we characterized the SEB in natural populations of Capsella bursapastoris, a model species of weed ecology. The composition of endophytic bacterial community was evaluated using deep sequencing of a 16S rDNA gene fragment. Additionally, we isolated bacterial strains from seeds and examined their plant growth‐promoting traits. Actinobacteria, Firmicutes, Alpha‐, and Gammaproteobacteria were major bacterial phyla inside seeds. C. bursapastoris natural populations exhibited variable seed microbiome such that the proportion of Actinobacteria and Alphaproteobacteria differed among populations, and 60 out of 82 OTUs occurred only in a single population. Thirteen cultivable bacterial species in six genera (Bacillus, Rhodococcus, Streptomyces, Staphylococcus, Paenibacillus, Pseudomonas) were isolated, and none of them except Staphylococcus haemolyticus were previously reported as seed endophytes. Eight isolates exhibited plant growth‐promoting traits like phosphate solubilization activity, indole‐3‐acetic acid, or siderophore production. Despite the differences in the bacterial communities among plant populations, at least one isolated strain from each population stimulated shoot growth of either C. bursapastoris or its close relative A. thaliana when grown with plants in the same media. These results suggest that a weedy plant species, C. bursapastoris, contains bacterial endophytes inside their seeds, stimulating seedling growth and thereby potentially affecting seedling establishment.  相似文献   

11.
Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.  相似文献   

12.
【背景】药用植物中蕴含多样性丰富的内生菌资源,这些微生物产生的多种新型物质在制药领域表现出较好的应用前景。【目的】研究蜘蛛抱蛋属(Aspidistra Ker-Gawl.)植物内生细菌的多样性,探索药用植物内生细菌在药用活性产物方面的开发潜力,以期发现具有抗菌活性的次级代谢产物。【方法】对9种13株新鲜的蜘蛛抱蛋植物进行表面消毒,采用5种分离培养基分离内生细菌;根据菌落形态特征排除重复菌株,并测定其16S rRNA基因序列,构建系统进化树分析内生细菌多样性;将菌株分别用2种培养基发酵,使用耻垢分枝杆菌(Mycobacterium smegmatis ATCC 700044)、水稻白叶枯菌(Xanthomonas oryzae PXO99A)、白色念珠菌(Candidaalbicans ATCC 10231)、肺炎雷伯菌(Klebsiella pneumoniae ATCC 700603)和耐药粪肠球菌HH22(Enterococcus faecalis HH22)5种检定菌对分离菌株的发酵液进行抑菌活性筛选。【结果】从植物组织中分离得到了234株内生细菌,根据形态初步排重得到156株植物内生细菌;基于16S rRNA基因序列构建的系统进化树显示它们分属于3门10目22科29属,其中链霉菌属(Streptomyces)、芽孢杆菌属(Bacillus)、微杆菌属(Microbacterium)、类芽孢杆菌属(Paenibacillus)和根瘤菌属(Rhizobium)的菌株广泛地分布在不同种的蜘蛛抱蛋植株中,且占据一定优势;发现可能的潜在新分类单元6个;156株内生细菌中38株菌的发酵液具有抑菌活性,初筛阳性率为23.7%。【结论】蜘蛛抱蛋植物组织中含有种类多样的内生细菌,它们可能是抗菌生物活性次级代谢产物的有效来源。  相似文献   

13.
Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis.  相似文献   

14.
Endophytic fungi of 3 age classes (seeds, seedlings, and mature plants) and 5 tissue classes (cotyledons, seed coats, roots, stems, and leaves) of coastal sand dune legumes Canavalia cathartica and Canavalia maritima were assessed by plating surface-sterilized segments on malt extract agar. Forty-six fungal taxa comprising 6 ascomycetes, 33 mitosporic fungi, 2 zygomycetes, and 5 sterile morphospecies were recovered. There was no significant difference in the colonization frequency of endophytes between plant species (p = 0.4098, Student's t test). Among the age classes, endophytic fungi colonized over 90% of seedlings and mature plants. Similarly, among tissue classes, endophytic fungi colonized over 90% of root, stem, and leaf segments. Diversity and richness of endophytic fungi were higher in C. cathartica than in C. maritima. Rarefaction curves revealed a "higher expected number of species" in mature plants of C. cathartica and seedlings of C. maritima, whereas it was highest in leaves of both plant species. The most dominant endophyte, Chaetomium globosum, colonized over 50% of the root, stem, and leaf segments of C. maritima and over 50% of the root segments of C. cathartica. The colonization frequency of C. globosum was found to be 5%-12.5% in seeds and increased up to 40%-64.4% in seedlings or mature plants. Halosarpheia sp. was the only marine fungus recovered among the endophytes.  相似文献   

15.
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.  相似文献   

16.
Fungal endophytes in seeds and needles of Pinus monticola   总被引:1,自引:1,他引:1  
Using a sequence-based approach, we investigated the transmission of diverse fungal endophytes in seed and needles of Pinus monticola, western white pine. We isolated 2003 fungal endophytes from 750 surface-sterilized needles. In contrast, only 16 endophytic isolates were obtained from 800 surface-sterilized seeds. The ITS region was sequenced from a representative selection of these endophytes. Isolates were then assigned to the most closely related taxa in GenBank. Although 95 % of the endophytes in needles from mature trees belonged to the Rhytismataceae, 82 unique ITS sequences were obtained from at least 21 genera and 10 different orders of fungi. Significantly, none of the endophytes in seed were rhytismataceous (χ2 = 180; P < 0.001). Similarly, needles of greenhouse seedlings yielded only non-rhytismataceous isolates, whereas seedlings of the same age that had naturally regenerated near older white pines in roadless areas were colonized by rhytismataceous endophytes almost to the same extent as in mature trees. Only one of 17 rhytismataceous isolates were able to grow on a medium containing only 0.17 % nitrogen, whereas 25 of 31 non-rhytismataceous endophytes grew. Rhytismataceous endophytes are dominant in needles of P. monticola, but they appear to be absent in seed, and unlikely colonists of nitrogen-limiting host tissues such as the apoplast.  相似文献   

17.
Fungal Epiphytes and Endophytes of Coffee Leaves (Coffea arabica)   总被引:1,自引:0,他引:1  
Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world’s most valuable crops.  相似文献   

18.
Dynamics of seed-borne rice endophytes on early plant growth stages   总被引:2,自引:0,他引:2  
Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.  相似文献   

19.
【目的】探究和比较超积累和非超积累生态型东南景天茎、叶微生物群落结构的异同。【方法】采用高通量测序技术研究野外两种生态型东南景天茎和叶片的内生细菌群落结构。【结果】4个样品总共得到366 783条有效序列和39 948个OTU(97%相似度)。从Shannon指数得知:两种生态型东南景天叶片内生菌的多样性均高于茎;超积累生态型东南景天叶片内生菌的多样性高于非超积累生态型,但非超积累生态型东南景天茎组织中内生菌多样性高于超积累生态型东南景天。超积累生态型东南景天的叶片和茎中的内生菌分别包括26和21个门,123和117个科;非超积累生态型东南景天叶片和茎中的内生菌分别包括43和22个门,175和83个科,4个样品的优势菌群均为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和蓝藻细菌门(Cyanobacteria)。在属分类水平上,超累积生态型东南景天叶片和茎第一优势菌属分别为Synechococcus和Plesiomonas;非超积累生态型东南景天叶片和茎组织第一优势菌群分别为Pseudomonas和Dechloromonas。【结论】两种生态型东南景天的叶片和茎中均具有丰富的内生细菌,但超积累生态型东南景天叶片内生菌多样性最大,且存在一些独有的功能菌群。  相似文献   

20.
Plants are chronically associated with microorganisms, residing all tissues. Holonomic analysis of diversity of established rhizobacteria in uncultivated plants is scarce. Thus, the present study was conducted to access the root-associated bacterial diversity of 6 crops (maize, canola, soybean, reed canarygrass, alfafa, and miscanthus) and 20 uncultivated plant species in the region of Sainte-Anne-de-Bellevue, Québec, Canada, using pure-culture methods. Based on 16S rRNA gene sequence analysis, 446 bacterial isolates were distributed onto four phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes), 32 families and 90 genera. Proteobacteria constituted the largest group of isolates (240), 40% of ectophytic and 61% of endophytic bacteria. Representatives of the genera Bacillus and Pseudomonas dominated in rhizosphere soil; Microbacterium and Pseudomonas were the predominant endophytes. Some genera were associated with specific plant species, such as Stenotrophomonas, Yersinia, Labrys and Luteibacter. Several endophytes were occasionally observed in the rhizosphere, and vice versa. This is the first survey of culturable endophytic bacteria associated with uncultivated plants in Québec. The culturable bacterial community studied herein are assumed to represent a portion of the entire phytomicrobiome of the evaluated plants. Results confirmed that the crops and uncultivated plants of Québec represent an extremely rich reservoir of diverse rhizobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号