首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Insulin-like growth factor 1 receptor ( IGF1R ) is essential for the signalling of growth. In this study, we performed single nucleotide polymorphism (SNP) detection in the Japanese quail IGF1R coding region and an association study between SNPs and body weight in two lines (SS and LL) selected for large and small body weight. Of 21 SNPs obtained, a SNP at position AB292766:c.2293G>A led to the replacement of a valine with an isoleucine (V765I). The two lines were fixed for alternate alleles, with allele encoding valine fixed in the LL line. A significant effect of the SNP genotype was found on 10-week body weight ( P  < 0.01) and on 4- to 10-week and 6- to 10-week average daily gain ( P  < 0.05) in the F2 family obtained from lines LL and SS. In six populations maintained in Japan or France, the frequency of allele encoding valine was higher than the allele encoding isoleucine.  相似文献   

3.
4.
Previous studies have confirmed that insulin growth factor-1 (IGF1) plays important roles in growth and body size in humans and animals. However, whether single nucleotide polymorphisms (SNPs) within the IGF1 gene affects body size and growth in pigs has been unclear. We identified IGF1 SNPs among 5 pig breeds (Berkshire, Duroc, Landrace, Yorkshire and Korea Native Pig) and found that the G allele of SNP (c.G189A) was associated with higher body weight and was more predominant in western pig breeds, while the Korean Native Pig is the breed with the highest frequency of the A allele. Four haplotypes (–GA–, –GG–, –AG–, and –AA–) were constructed using the 2 identified SNPs. The GA haplotype was most frequently observed, except in the Berkshire breed. In addition, these SNPs and haplotypes were significantly associated with body size (final weight), average daily gain, and backfat thickness (P < 0.05) in 2 intercrossed F2 pig populations (KNP × YS F2 and KNP × LR F2). Furthermore, the major GA haplotype had a significant additive effect on body size and average daily gain. In conclusion, specific SNPs within the porcine IGF1 gene may contribute to the smaller body size and lower growth rate of Korea Native Pigs.  相似文献   

5.
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

6.
Single nucleotide polymorphisms (SNPs) in growth hormone 1 (GH1), insulin-like growth factor 1 (IGF1) and leptin (LEP), all candidates for production traits in cattle, were characterized in North Eurasian cattle breeds. Allele frequencies of IGF1 exhibited significant (P < 0.05) deviation from neutral expectation and therefore, might be associated with divergence in North Eurasian cattle because of genetic selection. Allele frequencies and lower heterozygosity of LEP may indicate a recent introduction of an alternative allele in this geographic region. Locus F(ST) estimates were highest for IGF1 (0.151, sigma = 0.042) and lowest for GH (0.062, sigma = 0.020). Our results suggest a slightly higher population differentiation across the candidate genes (FST = 0.108) than across microsatellites (FST = 0.095), possibly because of selection and stochastic effects.  相似文献   

7.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

8.
The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor‐kappa B (NF‐κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3′‐UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected < 0.05), and marbling score (Bonferroni corrected < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle.  相似文献   

9.
Genetic polymorphism of the prolactin receptor (PRLR) gene was detected by PCR-SSCP and DNA sequencing methods in 665 individuals from five Chinese cattle breeds. The results showed that at the P1 locus, three observed genotypes (AA, AB and BB), two linked SNPs (G1267A and T1268C), and one missense mutation (S18N) within a putative signal peptide were determined. The frequencies of haplotypes A and B in the five breeds were 0.596–0.802 and 0.198–0.404, respectively. Polymorphism of the PRLR gene was shown to be significantly associated with growth traits in the Nanyang breed. Individuals with genotype BB had greater hucklebone width, body weight and average daily gain than those with genotype AA at 6 months old (P < 0.01), as well as better body height, body length and heart girth when 6 months (P < 0.05). This study revealed for the first time that the PRLR gene is a promising candidate gene that affects growth traits in cattle.  相似文献   

10.
Liu W  Yu Y  Li G  Tang S  Zhang Y  Wang Y  Zhang S  Zhang Y 《Animal genetics》2012,43(5):564-569
Growth hormone‐releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation in animals. The objective of this study was to investigate variations of the chicken GHRHR gene and their associations with growth and reproduction traits in 768 Beijing You chickens. Results revealed three single nucleotide polymorphisms (SNPs) in the promoter region of the gene (g.‐1654A>G, g.‐1411A>G and g.‐142T>C). Association analysis revealed that the novel SNP g.‐1654A>G had significant effects on chicken body weight at 7, 9, 11, 13, 17 weeks of age and the age of first egg as well as egg number at 32, 36 and 40 weeks. Significant association was also observed between g.‐1411A>G and g.‐142T>C with EN24. Moreover, the age of first egg was distinctly related with g.‐142T>C (< 0.05). Although significant statistical difference was not detected in GHRHR mRNA levels among genotypes of the SNPs (> 0.05), strong expression variations of the gene were found between the ages 17 and 20 weeks in the population (< 0.05). These results suggest that the three SNPs in the GHRHR promoter could be used as potential genetic markers to improve the growth and reproductive traits in chickens.  相似文献   

11.
Understanding the genetic basis of variation in traits related to growth and fillet quality in Atlantic salmon is of importance to the aquaculture industry. Several growth‐related QTL have been identified via the application of genetic markers. The IGF1 gene is considered a highly conserved and crucial growth‐regulating gene in salmonid species. However, the association between polymorphisms in the IGF1 gene and growth‐related traits in Atlantic salmon is unknown. Therefore, in this study, regions of the Atlantic salmon IGF1 gene were sequenced, aligned and compared across individuals. Three SNPs were identified in the putative promoter (SNP1, g.5763G>T; GenBank no. AGKD01012745 ), intron 1 (SNP2, g.7292C>T; GenBank no. AGKD01012745 ) and intron 3 (SNP3, g.4671A>C; GenBank no. AGKD01133398 ) regions respectively. These SNPs were genotyped in a population of 4800 commercial Atlantic salmon with data on several weight and fillet traits measured at harvest (at approximately 3 years of age). In a mixed model, association analysis of individual SNPs, SNP1 and SNP3 were both significantly associated with several weight traits (< 0.05). The estimated additive effect on overall harvest weight was approximately 35 and 110 g for SNPs 1 and 3 respectively. A haplotype analysis confirmed the association between genetic variation in the IGF1 gene with overall body weight (< 0.05) and fillet component traits (< 0.05). Our findings suggest the identified nucleotide polymorphisms of the IGF1 gene may either affect farmed Atlantic salmon growth directly or be in population‐wide linkage disequilibrium with causal variation, highlighting their possible utility as candidates for marker‐assisted selection in the aquaculture industry.  相似文献   

12.
Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri , is an economically important trait of beef cattle in Japan. The endothelial differentiation sphingolipid G-protein-coupled receptor 1 ( EDG1 ) gene, involved in blood vessel formation, has been previously shown to be expressed at different levels in musculus longissimus muscle between low-marbled and high-marbled steer groups. It is located within the genomic region of a quantitative trait locus for marbling, and thus was considered as a positionally functional candidate for the gene responsible for marbling. In this study, two single nucleotide polymorphisms (SNPs) in the 5' untranslated region (UTR) and the 3' UTR of EDG1 , referred to as c. - 312A>G and c.*446G>A , respectively, were detected between the two steer groups. The two SNPs were associated with the predicted breeding value for beef marbling standard number by analyses using a population of Japanese Black beef cattle. The effect of genotypes at each of the SNPs on the predicted breeding value for subcutaneous fat thickness was not statistically significant ( P  >   0.05). Reporter gene assays revealed no significant differences in gene expression between alleles at each of the SNPs. These findings suggest that EDG1 SNPs, although they may not be regarded as a causal mutation, may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle.  相似文献   

13.
Tractability, or how easily animals can be trained and controlled, is an important behavioural trait for the management and training of domestic animals, but its genetic basis remains unclear. Polymorphisms in the serotonin receptor 1A gene (HTR1A) have been associated with individual variability in anxiety‐related traits in several species. In this study, we examined the association between HTR1A polymorphisms and tractability in Thoroughbred horses. We assessed the tractability of 167 one‐year‐old horses reared at a training centre for racehorses using a questionnaire consisting of 17 items. A principal components analysis of answers contracted the data to five principal component (PC) scores. We genotyped two non‐synonymous single nucleotide polymorphisms (SNPs) in the horse HTR1A coding region. We found that one of the two SNPs, c.709G>A, which causes an amino acid change at the intracellular region of the receptor, was significantly associated with scores of four of five PCs in fillies (all Ps < 0.05) and one PC in colts (< 0.01). Horses carrying an A allele at c.709G>A showed lower tractability. This result provides the first evidence that a polymorphism in a serotonin‐related gene may affect tractability in horses with the effect partially different depending on sex.  相似文献   

14.
The insulin-like growth factor 1 (IGF-1) is considered to be a factor that mainly regulates growth, differentiation, and the maintenance of various function in numerous tissues through binding to a family of transmembrane tyrosine kinase receptors, signaling primarily through the insulin-like growth factor 1 receptor (IGF-1R) encoded by the IGF1R gene. The objectives of the present study were to estimate the allele and genotype frequencies of the IGF1R/MspI (silent mutation within exon 12) and the IGF1R/TaqI (within the 3′ untranslated region, 3′UTR) gene polymorphisms in beef cattle and to determine associations between these polymorphisms and growth traits. In a preliminary study on 310 Angus calves, association analyses with three production traits (birth weight, BWT; weaning weight adjusted to 210 days, WWT210; and average daily gain, ADG) were conducted. The GG genotype of the IGF1R/e12/MspI polymorphism was significantly associated (P?≤?0.05) with a higher WWT210 (+5.06 kg) compared to the AG genotype. Polymorphism within the 3′UTR had no significant effect on growth traits. The effect of combined genotypes was also examined. At WWT210, calves with the GG/AA and GG/AG combinations were heavier than calves with the AG/AA and AG/AG combined genotypes (P?≤?0.05). To our knowledge, this is the first report of a polymorphism within the coding region of the Bos taurus IGF1R gene.  相似文献   

15.
This study tested positional candidate genes adiponectin (ADIPOQ) and somatostatin (SST) for effects on carcass traits in a commercially relevant cattle population. Both genes are located within a region of BTA1 previously reported to harbour quantitative trait loci (QTL) that affect marbling, quality grade, yield grade, ribeye area and weaning weight in Bos taurus x Bos indicus crosses. Except for the first intron of ADIPOQ, both genes, including over 2 kb upstream of the promoters, were sequenced in five registered Angus sires to identify polymorphisms. A variable copy duplication and three single nucleotide polymorphisms (SNPs) in ADIPOQ and one SNP in SST were genotyped and tested for association with 19 traits in a 14-generation pedigree of 1697 registered Angus artificial insemination sires representing all the major USA lineages of the breed. Linear models that parameterized predicted genetic merits in terms of allele substitution effects were fit by weighted least squares, and goodness-of-fit tests were employed to differentiate causal mutations or polymorphisms in strong linkage disequilibrium (LD) with causal mutations from markers in weak LD with QTL. We confirmed the presence of QTL affecting marbling, ribeye muscle area and fat thickness in the vicinity of SST and ADIPOQ on BTA1 in Angus; excluded SST as underlying the ribeye muscle area QTL; and excluded ADIPOQ as underlying the marbling score QTL. However, association analysis provides very limited information about QTL location and has little intrinsic value when performed in the absence of linkage or LD analysis using flanking marker data to localize the QTL effect relative to positional candidate genes.  相似文献   

16.
为探讨宁夏回族原发性膝骨性关节炎(Osteoarthritis, OA)与瘦素受体基因(Leptin receptor, LEPR)A668G位点单核苷酸多态性(SNPs)之间的关系, 文章运用病例-对照研究, 通过聚合酶链反应-限制性片段长度多态性(PCR-RFLP)技术, 对148例兼具原发症状和影象证据的宁夏回族膝OA患者以及155名年龄、性别相匹配的对照群体进行LEPR A668G SNPs检测, 并进行测序验证, 分析LEPR基因多态性与膝OA的易感关联。研究表明, 膝OA组瘦素(Leptin, LEP)水平显著高于对照组(P<0.001), 血浆可溶性瘦素受体(sLEPR)水平较对照组明显降低(P<0.001), 膝OA组LEPR A668G位点AG/GA+GG基因型和G等位基因的分布频率和对照组存在差异(P=0.008和P=0.024)。研究结果提示, LEPR A668G位点的多态性可能与宁夏回族人群中膝OA易感性相关, 可以作为预测宁夏回族膝OA发病危险的遗传标记及早期防治的候选基因之一。  相似文献   

17.
Polymorphisms in the growth hormone (GH) and IGF type-1 (IGF1) genes have been associated with the economic traits in farm animals, including BW of some sheep breeds. However, it remains unknown if these polymorphisms also affect carcass traits in sheep. Thus, we aimed to identify polymorphisms in the GH and IGF1 genes in Santa Ines sheep in order to describe their allelic and genotypic frequencies as well as to test the hypotheses that they are associated with the carcass traits. Fragments of 4550 bp (IGF1) and 1194 bp (GH) were sequenced in up to 191 lambs. In all, 18 polymorphisms were identified in the IGF1 and 21 in the GH gene. The IGF1 polymorphisms rs430457475, rs412470350, rs409110739 and rs400113576 showed an additive effect on the internal carcass length (−0.9265±0.4223), rump girth (−2.9285±1.1473), rib yield (−1.0003±0.4588) and neck weight (−0.0567±0.0278), respectively. In addition, the polymorphisms rs58957314 in the GH affected the rib weight (−0.4380±0.1272) and rib yield (−2.2680±0.6970), loin weight (−0.1893±0.0516) and loin yield (−0.9423±0.3259), palette weight (−0.2265±0.0779) and palette yield (−0.9424±0.4184), leg weight (−0.3960±0.1375), neck weight (−0.0851±0.0394) and carcass finishing score (−0.1700±0.0839). These results allow us to conclude that there are polymorphisms in the IGF1 and GH genes associated with carcass traits in Santa Ines sheep, which can provide important information for marker-assisted selection.  相似文献   

18.
19.
The insulin-like growth factor binding protein acid labile subunit (IGFALS) gene encodes a serum protein that binds to IGFs and regulates growth, development, and other physiological processes. We have found that sequencing of the IGFALS gene in Chinese Qinchuan beef cattle (n = 300) revealed four SNP loci in exon two of the gene (g1219: T>C, g1893: T>C, g2612: G>A, and g2696: A>G). The SNP g2696: A>G resulted in a change from asparagine to aspartic acid (p. N574D) in the leucine-rich repeat region in the carboxyl-terminal domain of IGFALS. Four SNPs were in low linkage disequilibrium, and 12 different haplotypes were identified in the population. Association analysis suggested that SNP g1219: T>C had a significant association with hip width (P < 0.05) and SNP g2696: A>G displayed a significant association with stature (P < 0.05). The results from our investigation indicated that polymorphisms in the IGFALS gene were associated with growth traits of bovine, and may serve as a genetic marker for selection of beef cattle for growth traits, including stature.  相似文献   

20.
Melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) (MC1R) is a gene‐controlling melanogenesis in mammals. However, it is not well characterized in alpacas and its association with colour is not known. The aim of this study was to look for polymorphisms in the MC1R gene in Peruvian Huacaya alpacas and to analyse the relationship between MC1R single nucleotide polymorphisms (SNPs) and the variations in the instrumental measurement of colour of alpaca fibre. Sixty alpaca fibre samples from black, brown, cream and white animals (15 for each colour) were used to extract DNA from hair bulbs. Colour was measured with a spectrophotometer to obtain quantitative values (CieL*a*b*). Sixteen samples, four of each colour group, were sequenced. Eighteen SNP mutations, 10 not previously described, were found in these 16 sequences. Three of them were chosen (c.82A>G, c.865C>T, c.901C>T) to analyse genotypes by PCR‐RFLP in the other 44 fibre samples and to determine the association of mutations with instrumental colour. These three polymorphisms showed association with fibre lightness (P < 0.05), although there was no correlation with colour groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号