首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated by-products of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yields electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These posttranslational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders.  相似文献   

2.
Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs‐926) with NaHS (a H2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS protein expression in ECs. L‐cysteine, a precursor of H2S, stimulated NO production whereas blockage of the activity of H2S‐generating enzyme, cystathionine gamma‐lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3‐K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS‐specific siRNA or nitro‐L‐arginine methyl ester (L‐NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt‐dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H2S‐induced angiogenesis.  相似文献   

3.
The objective of this study was to determine whether absence of endothelial nitric oxide synthase (eNOS) affects the expression of cell surface adhesion molecules in endothelial cells. Murine lung endothelial cells (MLECs) were prepared by immunomagnetic bead selection from wild-type and eNOS knockout mice. Wild-type cells expressed eNOS, but eNOS knockout cells did not. Expression of neuronal NOS and inducible NOS was not detectable in cells of either genotype. Upon stimulation, confluent wild-type MLECs produced significant amounts of NO compared with N-monomethyl-L-arginine-treated wild-type cells. eNOS knockout and wild-type cells showed no difference in the expression of E-selectin, P-selectin, intracellular adhesion molecule-1, and vascular cell adhesion molecule-1 as measured by flow cytometry on the surface of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)-positive cells. Both eNOS knockout and wild-type cells displayed the characteristics of resting endothelium. Adhesion studies in a parallel plate laminar flow chamber showed no difference in leukocyte-endothelial cell interactions between the two genotypes. Cytokine treatment induced endothelial cell adhesion molecule expression and increased leukocyte-endothelial cell interactions in both genotypes. We conclude that in resting murine endothelial cells, absence of endothelial production of NO by itself does not initiate endothelial cell activation or promote leukocyte-endothelial cell interactions. We propose that eNOS derived NO does not chronically suppress endothelial cell activation in an autocrine fashion but serves to counterbalance signals that mediate activation. vascular biology; atherosclerosis; mouse models  相似文献   

4.
Endothelium-derived nitric oxide (NO) is a cytoprotective molecule to prevent endothelial cells (ECs) from apoptosis. CREB-binding protein (CBP) is involved in the apoptotic pathway in several tumor cells, however, little is known whether CBP is associated with apoptosis in ECs and the apoptotic effect of CBP on ECs is regulated by NO. Therefore, the purpose of the present study was to investigate whether silencing CBP expression could affect the sensitivity of ECs toward apoptotic stimuli and determined the role of NO. In this study, we found that when CBP expression was silenced by RNA interference, ECs were more prone to apoptosis under serum deprivation, whereas the apoptosis was not significantly induced in the serum-containing condition. The increased apoptosis is paralleled by a reduction of NO, and the apoptosis was reversed by NO donors, suggesting an important role of NO. Furthermore, CBP silencing decreased NO production by downregulating the endothelial NO synthase (eNOS) expression in a dose-dependent manner. These results indicated that CBP silencing is associated with decreased eNOS expression and NO production, and therefore concomitantly increased the sensitivity of ECs toward apoptosis.  相似文献   

5.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

6.
ABSTRACT: BACKGROUND: Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. METHODS: In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). RESULTS: We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. CONCLUSION: These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk.  相似文献   

7.
ABSTRACT: BACKGROUND: The pleiotropic effects of 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins), which are independent from their cholesterol-lowering action, have been widely recognized in various biological systems. Statins can affect endothelial homeostasis, which is partly modulated by the production of nitric oxide (NO). However, it is unclear how statin/NO-mediated posttranslational S-nitrosylation of endothelial proteins and changes in translational profiles may benefit endothelial integrity. Therefore, it is important to understand the statin/NO-mediated S-nitrosylation in endothelial cells. RESULTS: Rosuvastatin treatment of human umbilical vein endothelial cells (ECs) enhanced the enzymatic activity of endothelial nitric oxide synthase (eNOS) and the expression of 78 S-nitrosoproteins. Among these S-nitrosoproteins, we identified 17 proteins, including protein disulfide bond isomerase, phospholipase C, transaldolase and heat shock proteins. Furthermore, a hydrophobic Cys66 was determined as the S-nitrosylation site of the mitochondrial HSP70. In addition to the statin-modulated posttranslational S-nitrosylation, changes in the NO-mediated translational proteome were also observed. Seventeen major proteins were significantly upregulated after rosuvastatin treatment. However, 12 of these proteins were downregulated after pretreating ECs with an eNOS inhibitor (L-NAME), which indicated that their expression was modulated by NO. CONCLUSIONS: ECs treated with rosuvastatin increase eNOS activation. The increased NO production is involved in modulating S-nitrosylation and translation of proteins. We provide further evidence of the pleiotropic effect of rosuvastatin on endothelial physiology.  相似文献   

8.
In this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34(+) cells), by co-culturing the stem cells in a 3D fibrin gel with CD34(+)-derived endothelial cells (ECs). ECs differentiated from CD34(+) cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34(+)-derived ECs on CD34(+) cells is mediated, at least in part, by bioactive factors released from ECs. This effect likely involves the secretion of novel cytokines, including interleukin-17 (IL-17) and interleukin-10 (IL-10), and the activation of the ERK 1/2 pathway in CD34(+) cells. We also show that the endothelial differentiation of CD34(+) cells in co-culture with CD34(+)-derived ECs is mediated by a combination of soluble and insoluble factors. The regenerative potential of this co-culture system was demonstrated in a chronic wound diabetic animal model. The co-transplantation of CD34(+) cells with CD34(+)-derived ECs improved the wound healing relatively to controls, by decreasing the inflammatory reaction and increasing the neovascularization of the wound.  相似文献   

9.
Peroxisome proliferator-acitivated receptor alpha (PPARalpha) is a member of nuclear receptor superfamily. Recent studies have shown that the activators for PPARalpha inhibit the expression of some inflammatory molecules in vascular endothelial cells (ECs) and vascular smooth muscle cells, indicating the anti-inflammatory roles of PPARalpha on vascular walls. In this investigation, we showed that RU486, already proved to be an active anti-glucocorticoid and anti-progesterone agent, blocked the inhibition of tumor necrosis factor (TNF)-alpha-stimulated interleukin-6 (IL-6) production by the PPARalpha activator fenofibrate in human umbilical vein ECs. Transient transfection of bovine aortic ECs with an IL-6 promoter construct demonstrated that RU486 blocked the inhibitory effect of fenofibrate on TNF-alpha-induced IL-6 promoter activity. By fluorescence microscopy, RU486 was found to prevent fenofibrate-induced nuclear translocation of PPARalpha. Thus, RU486 has an antagonizing effect on PPARalpha-mediated down-regulation of IL-6 in vascular ECs. This effect may be exerted by its interference with the nuclear translocation of PPARalpha.  相似文献   

10.
Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““adsorption-elution-amplification““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““ procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin- 1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin- 1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.  相似文献   

11.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

12.
Omentin is a recently identified adipocytokine with insulin-sensitizing effect. While lack of omentin may be related to the pathogenesis of obesity-related cardiovascular diseases, its effect in vasculature is largely unknown. We examined effects of omentin on vascular endothelial inflammatory states. Western blotting was performed to analyze inflammatory signal transduction in cultured vascular endothelia cells. The cyclic guanosine monophosphate (cGMP) content was measured using enzyme immunoassay. Treatment of human umbilical vein endothelial cells with omentin (300 ng/ml, 20 min) induced phosphorylation of 5′-AMP-activated protein kinase (AMPK) (Thr 172) and endothelial nitric oxide (NO) synthase (eNOS) (Ser 1177). Consistently, omentin increased the cGMP level. Pretreatment with omentin (300 ng/ml, 30 min) significantly inhibited the phosphorylation of JNK as well as expression of cyclooxygenase (COX)-2 by TNF-α (5 ng/ml, 20 min–24 h). An inhibitor of JNK significantly inhibited the TNF-α-induced COX-2 expression. Inhibitory effect of omentin on TNF-α-induced COX-2 was reversed by a NOS inhibitor. The present results demonstrate for the first time that omentin plays an anti-inflammatory role by preventing the TNF-α-induced COX-2 expression in vascular endothelial cells. Omentin inhibits COX-2 induction via preventing the JNK activation presumably through activation of AMPK/eNOS/NO pathways.  相似文献   

13.
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.  相似文献   

14.
Gap junctions (GJs) play an important role in vascular function, stability, and homeostasis in endothelial cells (ECs), and GJs are comprised of members of the connexin (Cx) family. GJs of vascular ECs are assembled from Cx37, Cx40, and Cx43, and we showed that ECs also express Cx32. In this study, we investigated a potential role for Cx32 during vascular inflammation. Expression of Cx32 mRNA and protein by human umbilical venous ECs (HUVECs) decreased following treatment with tumor necrosis factor (TNF)-α, but lipopolysaccharide (LPS) and interleukin (IL)-1β did not affect Cx32 expression. Intracellular transfer of an inhibitory anti-Cx32 monoclonal antibody significantly enhanced TNF-α-induced monocyte chemotactic protein (MCP)-1 and IL-6 expression, but overexpression of Cx32 abrogated TNF-α-induced MCP-1 and IL-6 expression. LPS treatment of Cx32 knock-out mice significantly increased the serum concentrations of TNF-α, interferon-γ, IL-6 and MCP-1, compared to wild-type littermate mice. These data suggest that Cx32 protects ECs from inflammation by regulating cytokine expression and plays an important role in the maintenance of vascular function.  相似文献   

15.
Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phosphate pathway, is the principal intracellular source of NADPH. NADPH is utilized as a cofactor by vascular endothelial cell nitric-oxide synthase (eNOS) to generate nitric oxide (NO*). To determine whether G6PD modulates NO*-mediated angiogenesis, we decreased G6PD expression in bovine aortic endothelial cells using an antisense oligodeoxynucleotide to G6PD or increased G6PD expression by adenoviral gene transfer, and we examined vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation, migration, and capillary-like tube formation. Deficient G6PD activity was associated with a significant decrease in endothelial cell proliferation, migration, and tube formation, whereas increased G6PD activity promoted these processes. VEGF-stimulated eNOS activity and NO* production were decreased significantly in endothelial cells with deficient G6PD activity and enhanced in G6PD-overexpressing cells. In addition, G6PD-deficient cells demonstrated decreased tyrosine phosphorylation of the VEGF receptor Flk-1/KDR, Akt, and eNOS compared with cells with normal G6PD activity, whereas overexpression of G6PD enhanced phosphorylation of Flk-1/KDR, Akt, and eNOS. In the Pretsch mouse, a murine model of G6PD deficiency, vessel outgrowth from thoracic aorta segments was impaired compared with C3H wild-type mice. In an in vivo Matrigel angiogenesis assay, cell migration into the plugs was inhibited significantly in G6PD-deficient mice compared with wild-type mice, and gene transfer of G6PD restored the wild-type phenotype in G6PD-deficient mice. These findings demonstrate that G6PD modulates angiogenesis and may represent a novel angiogenic regulator.  相似文献   

16.
17.
The endothelial isoform of nitric-oxide synthase (eNOS) is regulated by a complex pattern of post-translational modifications. In these studies, we show that eNOS is dynamically regulated by S-nitrosylation, the covalent adduction of nitric oxide (NO)-derived nitrosyl groups to the cysteine thiols of proteins. We report that eNOS is tonically S-nitrosylated in resting bovine aortic endothelial cells and that the enzyme undergoes rapid transient denitrosylation after addition of the eNOS agonist, vascular endothelial growth factor. eNOS is thereafter progressively renitrosylated to basal levels. The receptor-mediated decrease in eNOS S-nitrosylation is inversely related to enzyme phosphorylation at Ser(1179), a site associated with eNOS activation. We also document that targeting of eNOS to the cell membrane is required for eNOS S-nitrosylation. Acylation-deficient mutant eNOS, which is targeted to the cytosol, does not undergo S-nitrosylation. Using purified eNOS, we show that eNOS S-nitrosylation by exogenous NO donors inhibits enzyme activity and that eNOS inhibition is reversed by denitrosylation. We determine that the cysteines of the zinc-tetrathiolate that comprise the eNOS dimer interface are the targets of S-nitrosylation. Mutation of the zinc-tetrathiolate cysteines eliminates eNOS S-nitrosylation but does not eliminate NO synthase activity, arguing strongly that disruption of the zinc-tetrathiolate does not necessarily lead to eNOS monomerization in vivo. Taken together, these studies suggest that eNOS S-nitrosylation may represent an important mechanism for regulation of NO signaling pathways in the vascular wall.  相似文献   

18.
Chronic activation of the acute phase response (APR) is associated with atherosclerosis. Elevated levels of interleukin-6, the major inducer of the APR, are associated with an increased risk of cardiovascular events. One of the clinical hallmarks of atherogenesis is endothelial dysfunction, characterized by a decrease in endothelial production of nitric oxide (NO). We hypothesized that interleukin-6 (IL-6) decreases endothelial NO synthase (eNOS) expression. We now show that IL-6 treatment of human aortic endothelial cells (HAEC) decreases steady-state levels of human eNOS mRNA and protein. This decrease in eNOS expression is caused in part by IL-6 inhibition of transactivation of the human eNOS promoter. To explore the mechanism by which IL-6 affects eNOS expression, we examined activation of signal transducer and transactivator-3 (Stat3). The IL-6 receptor (IL-6R) is expressed in HAEC, and Stat3 is phosphorylated in response to IL-6 stimulation of the IL-6R. We identified four consensus sequences for Stat3 binding (SIE) in the eNOS promoter at positions -1520, -1024, -840, and -540. Transfection of eNOS promoter mutants revealed that the SIE at -1024 mediates Stat3 inhibition of eNOS promoter activity. Gel-shift analysis of nuclear extracts from HAEC treated with IL-6 confirms that Stat3 binds to a complex containing the SIE at -1024. RNA silencing of STAT3 blocks the inhibitory effect of IL-6 on eNOS expression. Our data show that IL-6 has direct effects upon endothelial cells, inhibiting eNOS expression in part through Stat3. Decreased levels of eNOS may be an important component of the pro-atherogenic effect of the APR.  相似文献   

19.
组胺对肺动脉内皮细胞一氧化氮合酶基因表达的影响   总被引:3,自引:1,他引:3  
Lu DQ  Li HG  Ye H  Ye SQ  Jin S  Wang DX 《生理学报》2004,56(3):288-294
本实验研究了组胺对原代培养的肺动脉内皮细胞一氧化氮合酶(nitric oxidCsynthase,NOS)基因表达的影响及分子机制。采用RT-PCR和免疫印迹技术分别检测mRNA和蛋白质的表达水平,用荧光素酶报告基因实验检测eNOS基因转录起始点上游长1.6-kb的启动子活性,用硝酸还原酶法检测NO的产量。结果发现,组胺增强eNOS表达,呈浓度和时间依赖性,10μmol/L组胺处理肺动脉内皮细胞24h可使eNOS mRNA和蛋白质的表达达到高峰,eNOS mRNA水平为正常对照组的160.8±12.2%(P<0.05),蛋白质水平为正常对照组的136.2±11.2%(P<0.05)。特异性CaMK Ⅱ抑制剂KN-93可抑制组胺的这一效应,表明组胺可通过激活CaMK Ⅱ增强肺动脉内皮细胞eNOS基因的表达。报告基因实验表明,10μmol/L组胺处理24h后肺动脉内皮细胞eNOS基因启动子的活性增强,为正常对照组的148.2±33.7%(P<0.05)。组胺可使肺动脉内皮细胞产生NO增加。这些结果表明组胺在转录水平增强肺动脉内皮细胞eNOS基因的表达,并使细胞产生NO增加,这可能是组胺调节肺血管张力的机制之一。CaMK Ⅱ可能是组胺增强肺动脉内皮细胞eNOS基因表达的途径之一。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号