首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IgASE1, a C18-Delta9-polyunsaturated fatty acid-specific fatty acid elongase component from Isochrysis galbana, contains a variant histidine box (his-box) with glutamine replacing the first histidine of the conserved histidine-rich motif present in all other known equivalent proteins. The importance of glutamine and other variant amino acid residues in the his-box of IgASE1 was determined by site-directed mutagenesis. Results showed that all the variation in amino acid sequence between this motif in IgASE1 and the consensus sequences of other elongase components was required for optimum enzyme activity. The substrate specificity was shown to be unaffected by these changes suggesting that components of the his-box are not directly responsible for substrate specificity.  相似文献   

2.
An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells.  相似文献   

3.
Membrane-bound microsomal fatty acid desaturases are known to have three conserved histidine boxes, comprising a total of up to eight histidine residues. Recently, a number of deviations from this consensus have been reported, with the substitution of a glutamine for the first histidine residue of the third histidine box being present in the so called 'front end' desaturases. These enzymes are also characterized by the presence of a cytochrome b5 domain at the protein N-terminus. Site-directed mutagenesis has been used to probe the functional importance of a number of amino acid residues which comprise the third histidine box of a 'front end' desaturase, the borage Delta6-fatty acid desaturase. This showed that the variant glutamine in the third histidine box is essential for enzyme activity and that histidine is not able to substitute for this residue.  相似文献   

4.
We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.  相似文献   

5.
Specific interactions of transmembrane helices play a pivotal role in the folding and oligomerization of integral membrane proteins. The helix-helix interfaces frequently depend on specific amino acid patterns. In this study, a heptad repeat pattern was randomized with all naturally occurring amino acids to uncover novel sequence motifs promoting transmembrane domain interactions. Self-interacting transmembrane domains were selected from the resulting combinatorial library by means of the ToxR/POSSYCCAT system. A comparison of the amino acid composition of high-and low-affinity sequences revealed that high-affinity transmembrane domains exhibit position-specific enrichment of histidine. Further, sequences containing His preferentially display Gly, Ser, and/or Thr residues at flanking positions and frequently contain a C-terminal GxxxG motif. Mutational analysis of selected sequences confirmed the importance of these residues in homotypic interaction. Probing heterotypic interaction indicated that His interacts in trans with hydroxylated residues. Reconstruction of minimal interaction motifs within the context of an oligo-Leu sequence confirmed that His is part of a hydrogen bonded cluster that is brought into register by the GxxxG motif. Notably, a similar motif contributes to self-interaction of the BNIP3 transmembrane domain.  相似文献   

6.
Plasmodium is unable to carry out de novo fatty acid synthesis and has to obtain these compounds from their host for subsequent activation by thioesterification with coenzyme A. This activity is catalyzed by a fatty acyl-CoA synthetase enzyme (EC 6.2.1.3). Here, we describe a novel gene from P. falciparum whose recombinant purified product from baculovirus-transfected insect cell line had the enzymatic activity of a long-chain fatty acyl-CoA synthetase. It was named pf acs1, since it belongs to a multi-member gene family as revealed by the sequence of several clones and a multi-band pattern in Southern blots. The sequence specifies a product of 820 amino acid residues. It was transcribed and expressed in infected erythrocytes having an apparent molecular mass of 100 kDa. Immuno-labeling of infected erythrocytes with a specific antibody against the carboxy-terminal part of the PfACS1 localized the product early after the erythrocyte invasion in vesicle-like structures budding off the parasitoforous membrane toward the red cell cytoplasm. Its unique carboxy- terminal structure of 70 extra amino acid residues, longer than any other reported acyl-CoA synthetase, is probably related to its localization in the cytoplasm of the host erythrocyte. The phylogenetic relationship among other AMP-forming enzymes, placed PfACS1 closer to Saccharomyces cerevisiae, sharing significant amino acid identities, especially in the conserved signature motif that modulates fatty acid substrate specificity and ATP/AMP-binding domains. Taking into account the importance of this enzymatic activity for the parasite, its extra-cellular location inside the infected erythrocyte, and the divergence with respect to the homologous human enzymes, it may be an important protein as a potential target candidate for chemotherapeutic antimalaria drugs.  相似文献   

7.
Aluminum- and mild steel-binding peptides from phage display   总被引:4,自引:0,他引:4  
Using a phage library displaying random peptides of 12 amino acids on its surface, several peptides were found that bind to aluminum and mild steel. Like other metal-binding peptides, no obvious consensus motif has been found for these peptides. However, most of them are rich in hydroxyl-containing amino acids, serine or threonine, or contain histidine. For the aluminum-binding peptides, peptides with a higher number of hydroxyl-containing amino acids bind to the aluminum surface more tightly. For example, Val-Pro-Ser-Ser-Gly-Pro-Gln-Asp-Thr-Arg-Thr-Thr, which contains five hydroxyl-containing amino acid residues, was selected four-fold more frequently than a peptide containing only one serine, suggesting an important role for the hydroxyl-containing amino acids in the metal–peptide interaction.  相似文献   

8.
A phospholipase D (PLD) superfamily was recently identified that contains proteins of highly diverse functions with the conserved motif HXKX4DX6G(G/S). The superfamily includes a bacterial nuclease, human and plant PLD enzymes, cardiolipin synthases, phosphatidylserine synthases, and the murine toxin from Yersinia pestis (Ymt). Ymt is particularly effective as a prototype for family members containing two conserved motifs, because it is smaller than many other two-domain superfamily enzymes, and it can be overexpressed. Large quantities of pure recombinant Ymt allowed the formation of diffraction-quality crystals for x-ray structure determination. Dimeric Ymt was shown to have PLD-like activity as demonstrated by the hydrolysis of phosphatidylcholine. Ymt also used bis(para-nitrophenol) phosphate as a substrate. Using these substrates, the amino acids essential for Ymt function were determined. Specifically, substitution of histidine or lysine in the conserved motifs reduced the turnover rate of bis(para-nitrophenol) phosphate by a factor of 10(4) and phospholipid turnover to an undetectable level. The role of the conserved residues in catalysis was further defined by the isolation of a radiolabeled phosphoenzyme intermediate, which identified a conserved histidine residue as the nucleophile in the catalytic reaction. Based on these data, a unifying two-step catalytic mechanism is proposed for this diverse family of enzymes.  相似文献   

9.
Two phospholipases A2, CM-I and CM-II, from Aspidelaps scutatus venom were purified by gel filtration followed by ion-exchange chromatography on CM-cellulose. The enzymes consist of 119 amino acids including fourteen half-cystines. The complete primary structure of CM-II has been determined. The sequence and the invariant amino acid residues resemble those of the phospholipase A2 from the genus Naja. The toxicity of the enzymes is comparable to those encountered for the phospholipases A2 from African cobra venoms. The phospholipase A2 (CM-II) contains two histidine residues which are located at position 20 and the reactive site (histidine-47) of the enzyme.  相似文献   

10.

SUMMARY

Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.  相似文献   

11.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

12.
The fatty acid elongase-1 β-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.  相似文献   

13.
玉米FAD2基因的克隆及序列分析   总被引:6,自引:0,他引:6  
高等植物中的A12脂肪酸脱饱和酶是将油酸转化为亚油酸的酶。根据已发表的其他高等植物的FAD2基因的保守序列设计同源引物,通过RT—PCR从玉米幼胚中扩增得到一个特异的cDNA基因片段。通过生物信息学分析,从玉米幼胚cDNA和基因组中均扩增得到1164 bp FAD2基因(GenBank登陆号:DQ496227),它编码387个氨基酸,含有完整的ORF框,在ORF框内无内含子。序列联配与树状分析结果表明,FAD2推导的氨基酸序列与其他物种的A12脱饱和酶基因具有同源性。它含有3个组氨酸保守域和2段很长的疏水区,是一个跨膜4次的膜结合蛋白。半定量RT—PCR分析显示FAD2基因在玉米幼胚中表达量最高,在叶、茎、根中亦有低水平表达。  相似文献   

14.
The most widely distributed biosynthetic pathway to initiate phosphatidic acid formation in bacterial membrane phospholipid biosynthesis involves the conversion of acyl-acyl carrier protein to acylphosphate by PlsX and the transfer of the acyl group from acylphosphate to glycerol 3-phosphate by an integral membrane protein, PlsY. The membrane topology of Streptococcus pneumoniae PlsY was determined using the substituted cysteine accessibility method. PlsY has five membrane-spanning segments with the amino terminus and two short loops located on the external face of the membrane. Each of the three larger cytoplasmic domains contains a highly conserved sequence motif. Site-directed mutagenesis revealed that each conserved domain was critical for PlsY catalysis. Motif 1 had an essential serine and arginine residue. Motif 2 had the characteristics of a phosphate-binding loop. Mutations of the conserved glycines in motif 2 to alanines resulted in a Km defect for glycerol 3-phosphate binding leading to the conclusion that this motif corresponded to the glycerol 3-phosphate binding site. Motif 3 contained a conserved histidine and asparagine that were important for activity and a glutamate that was critical to the structural integrity of PlsY. PlsY was noncompetitively inhibited by palmitoyl-CoA. These data define the membrane architecture and the critical active site residues in the PlsY family of bacterial acyltransferases.  相似文献   

15.
The enzyme nitrate reductase, which catalyzes the reduction of nitrate to nitrite, is a multi-redox center homodimeric protein. Each polypeptide subunit is approximately 100 kDa in size and contains three separate domains, one each for a flavin, a heme-iron, and a molybdopterin cofactor. The heme-iron domain of nitrate reductase has homology with the simple redox protein, cytochrome b5, whose crystal structure was used to predict a three-dimensional structure for the heme domain. Two histidine residues have been identified that appear to coordinate the iron of the heme moiety, while other residues may be important in the folding or the function of the heme pocket. Site-directed mutagenesis was employed to obtain mutants that encode nitrate reductase derivatives with eight different single amino acid substitutions within the heme domain, including the two central histidine residues. Replacement of one of these histidines by alanine resulted in a completely nonfunctional enzyme whereas replacement of the other histidine resulted in a stable and functional enzyme with a lower affinity for heme. Certain amino acid substitutions appeared to cause a rapid turnover of the heme domain, whereas other substitutions were tolerated and yielded a stable and fully active enzyme. Three different single amino acid replacements within the heme domain led to a dramatic change in regulation of nitrate reductase synthesis, with significant expression of the enzyme even in the absence of nitrate induction.  相似文献   

16.
The enzyme nitrate reductase, which catalyzes the reduction of nitrate to nitrite, is a multi-redox center homodimeric protein. Each polypeptide subunit is approximately 100 kDa in size and contains three separate domains, one each for a flavin, a heme-iron, and a molybdopterin cofactor. The heme-iron domain of nitrate reductase has homology with the simple redox protein, cytochrome b5, whose crystal structure was used to predict a three-dimensional structure for the heme domain. Two histidine residues have been identified that appear to coordinate the iron of the heme moiety, while other residues may be important in the folding or the function of the heme pocket. Site-directed mutagenesis was employed to obtain mutants that encode nitrate reductase derivatives with eight different single amino acid substitutions within the heme domain, including the two central histidine residues. Replacement of one of these histidines by alanine resulted in a completely nonfunctional enzyme whereas replacement of the other histidine resulted in a stable and functional enzyme with a lower affinity for heme. Certain amino acid substitutions appeared to cause a rapid turnover of the heme domain, whereas other substitutions were tolerated and yielded a stable and fully active enzyme. Three different single amino acid replacements within the heme domain led to a dramatic change in regulation of nitrate reductase synthesis, with significant expression of the enzyme even in the absence of nitrate induction.  相似文献   

17.
The first enzyme of histidine biosynthesis in Salmonella typhimurium, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), has been purified from two bacterial strains containing histidine operator deletions and compared to the eenzyme from a strain that has a normal operator. The enzymes isolated in different ways also are compared. Evidence as to the separateness of the operator and first structural gene or covalent modification of the first enzyme was sought. Specific activity, histidine feedback inhibition, amino acid analysis, discontinuous-gel electrophoresis, and gel filtration of the native enzyme, and Ouchterlony double-immunodiffusion tests were carried out. The purified enzyme contains little phosphorous and has five cysteine residues per subunit, which all are readily titratable. No evidence for differences in the enzyme preparations was obtained. Thus, no evidence for overlap of the histidine operator with the first structural gene was obtained.  相似文献   

18.
Unsaturated long-chain fatty acids selectively bind to the DNA binding sites of DNA polymerase beta and DNA topoisomerase II, and inhibit their activities, although the amino acid sequences of these enzymes are markedly different from each other. Computer modeling analysis revealed that the fatty acid interaction interface in both enzymes has a group of four amino acid residues in common, forming a pocket which binds to the fatty acid molecule. The four amino acid residues were Thr596, His735, Leu741 and Lys983 for yeast DNA topoisomerase II, corresponding to Thr79, His51, Leu11 and Lys35 for rat DNA polymerase beta. Using three-dimensional structure model analysis, we determined the spatial positioning of specific amino acid residues binding to the fatty acids in DNA topoisomerase II, and subsequently obtained supplementary information to build the structural model.  相似文献   

19.
Mammalian AMP deaminase 3 (AMPD3) enzymes reportedly bind to intracellular membranes, plasma lipid vesicles, and artificial lipid bilayers with associated alterations in enzyme conformation and function. However, proteolytic sensitivity of AMPD polypeptides makes it likely that prior studies were performed with N-truncated enzymes. This study uses erythrocyte ghosts to characterize the reversible cytoplasmic membrane association of human full-sized recombinant isoform E (AMPD3). Membrane-bound isoform E exhibits diminished catalytic activity whereas low micromolar concentrations of the cationic antibiotic, neomycin, disrupt this protein-lipid interaction and relieve catalytic inhibition. The cytoplasmic membrane association of isoform E also displays an inverse correlation with pH in the physiological range. Diethyl pyrocarbonate (DEPC) modification of isoform E nearly abolishes its cytoplasmic membrane binding capacity, and this effect can be reversed by hydroxylamine. Difference spectra reveal that 18 of 29 histidine residues in each isoform E subunit are N-carbethoxylated by DEPC. These combined data demonstrate that protonated imidazole rings of histidine residues mediate a pH-responsive association of isoform E with anionic charges on the surface of the cytoplasmic membrane, possibly phosphatidylinositol 4,5-bisphosphate, a pure noncompetitive inhibitor of the enzyme. Finally, AMPD1 and a series of N-truncated AMPD3 enzymes are used to show that these behaviors are specific to isoform E and require up to 48 N-terminal amino acids, even though this stretch of sequence contains no histidine residues. The pH-responsive cytosol-membrane partitioning of isoform E may be an important mechanism for branch point regulation of adenylate catabolism.  相似文献   

20.
Shanklin J  Whittle E 《FEBS letters》2003,545(2-3):188-192
Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号