共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Polycomb group蛋白复合体 总被引:1,自引:0,他引:1
Polycomb group (PcG) 蛋白是一组通过染色质修饰调控靶基因的转录抑制子, 从生化和功能上它可以分成两个主要的核心蛋白复合体PRC1(Polycomb repressive complex 1)和PRC2(Polycomb repressive complex 2)。研究发现PcG蛋白不仅控制个体正确的发育模式, 而且与细胞的增殖、分化和肿瘤发生有关。文章就PcG蛋白的组成、作用机制及功能进行综述, 并对PcG未来的研究方向进行展望。 相似文献
4.
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl–PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions. 相似文献
5.
6.
Polycomb complexes and epigenetic states 总被引:18,自引:0,他引:18
Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms. 相似文献
7.
Summary We have studied the embryonic and adult phenotypes of genetic combinations between Polycomb (Pc), Regulator of bithorax (Rg-bx) and the genes of the Bithorax complex (BX-C) and the Antennapedia complex (ANT-C). The products of Pc and Rg-bx genes act antagonistically, their mutant combinations leading to the ectopic expression of genes of the BX-C and ANT-C. The genetic analysis of the Pc locus suggests it is a complex gene. Pc+ products behave as members of a regulatory set that negatively control the expression of BX-C and ANT-C genes. Genetic combinations between different doses of Pc, Rg-bx and the genes of the BX-C and ANT-C have phenotypes which may be interpreted as resulting from ectopic derepression of posterior selector genes repressing selector genes of anterior segments. The transformation phenotypes of certain genetic combinations differ in embryos and adults. A model of regulation of the BX-C and the ANT-C genes during the imaginal cell proliferation is presented, in which the specification state is maintained by self-activation of a given selector gene and down modulation of other selector genes in the same cell. 相似文献
8.
9.
Polycomb complexes and silencing mechanisms 总被引:15,自引:0,他引:15
Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference. 相似文献
10.
11.
Juxtaposed Polycomb complexes co-regulate vertebral identity 总被引:3,自引:0,他引:3
12.
The inherent self-recognition properties of DNA have led to its use as a scaffold for various nanotechnology self-assembly applications, with macromolecular complexes, metallic and semiconducting nanoparticles, proteins, inter alia, being assembled onto a designed DNA scaffold. Such structures may typically comprise a number of DNA molecules organized into macromolecules. Many studies have used synthetic methods to produce the constituent DNA molecules, but this typically constrains the molecules to be no longer than around 100 base pairs (30 nm). However, applications that require larger self-assembling DNA complexes, several tens of nanometers or more, need to be generated by other techniques. Here, we present a generic technique to generate large linear, branched, and/or circular DNA macromolecular complexes. The effectiveness of this technique is demonstrated here by the use of Lambda Bacteriophage DNA as a template to generate single- and double-branched DNA structures approximately 120 nm in size. 相似文献
13.
14.
15.
16.
The Drosophila mushroom bodies (MBs), paired brain structures composed of vertical and medial lobes, achieve their final organization at metamorphosis. The alpha lobe absent (ala) mutant randomly lacks either the vertical lobes or two of the median lobes. We characterize the ala axonal phenotype at the single-cell level, and show that the ala mutation affects Drosophila ethanolamine (Etn) kinase activity and induces Etn accumulation. Etn kinase is overexpressed in almost all cancer cells. We demonstrate that this enzymatic activity is required in MB neuroblasts to allow a rapid rate of cell division at metamorphosis, linking Etn kinase activity with mitotic progression. Tight control of the pace of neuroblast division is therefore crucial for completion of the developmental program in the adult brain. 相似文献
17.
One of the major goals of neurobiology is to describe, in molecular terms, how a neural progenitor cell can generate an ordered series of uniquely fated neurons and glia. It has become clear that many, or all, neural-subtype identities can be linked to sequentially changing regulatory programs within neural precursors. Recent studies shed light on regulatory inputs and timing mechanisms that generate temporally defined cell identities, and new contributions are beginning to establish a link between the temporal network and cell function. 相似文献
18.
Polycomb complexes assemble at their target sites and silence neighboring genes when these are not actively transcribed. The action of these complexes and of Trithorax complexes bound to the Polycomb Response Element establish alternative silent or derepressed states that are remembered through cell division and maintained for the rest of development. Recent results that may help explain the properties of these states are reviewed. 相似文献
19.
20.
Ouyang Y Petritsch C Wen H Jan L Jan YN Lu B 《Development (Cambridge, England)》2011,138(11):2185-2196
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis. 相似文献