首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have previously defined in the NH2-terminal cytoplasmic domain of the mouse AE2/SLC4A2 anion exchanger a critical role for the highly conserved amino acids (aa) 336-347 in determining wild-type pH sensitivity of anion transport. We have now engineered hexa-Ala ((A)6) and individual amino acid substitutions to investigate the importance to pH-dependent regulation of AE2 activity of the larger surrounding region of aa 312-578. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during changes in pHi or pHo in HEPES-buffered and in 5% CO2/HCO3- -buffered conditions. Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited at low pHo, with a pHo(50) value = 6.75 +/- 0.05 and was stimulated up to 10-fold by intracellular alkalinization. Individual mutation of several amino acid residues at non-contiguous sites preceding or following the conserved sequence aa 336-347 attenuated pHi and/or pHo sensitivity of 36Cl- efflux. The largest attenuation of pH sensitivity occurred with the AE2 mutant (A)6357-362. This effect was phenocopied by AE2 H360E, suggesting a crucial role for His360. Homology modeling of the three-dimensional structure of the AE2 NH2-terminal cytoplasmic domain (based on the structure of the corresponding region of human AE1) predicts that those residues shown by mutagenesis to be functionally important define at least one localized surface region necessary for regulation of AE2 activity by pH.  相似文献   

2.
The mouse anion exchanger AE2/SLC4A2 Cl(-)/HCO(-)(3) exchanger is essential to post-weaning life. AE2 polypeptides regulate pH(i), chloride concentration, cell volume, and transepithelial ion transport in many tissues. Although the AE2a isoform has been extensively studied, the function and regulation of the other AE2 N-terminal variant mRNAs of mouse (AE2b1, AE2b2, AE2c1, and AE2c2) have not been examined. We now present an extended analysis of AE2 variant mRNA tissue distribution and function. We show in Xenopus oocytes that all AE2 variant polypeptides except AE2c2 mediated Cl(-) transport are subject to inhibition by acidic pH(i) and to activation by hypertonicity and NH(+)(4). However, AE2c1 differs from AE2a, AE2b1, and AE2b2 in its alkaline-shifted pH(o)((50)) (7.70 +/- 0.11 versus 6.80 +/- 0.05), suggesting the presence of a novel AE2a pH-sensitive regulatory site between amino acids 99 and 198. Initial N-terminal deletion mutagenesis restricted this site to the region between amino acids 120 and 150. Further analysis identified AE2a residues 127-129, 130-134, and 145-149 as jointly responsible for the difference in pH(o)((50)) between AE2c1 and the longer AE2a, AE2b1, and AE2b2 polypeptides. Thus, AE2c1 exhibits a unique pH(o) sensitivity among the murine AE2 variant polypeptides, in addition to a unique tissue distribution. Physiological coexpression of AE2c1 with other AE2 variant polypeptides in the same cell should extend the range over which changing pH(o) can regulate AE2 transport activity.  相似文献   

3.
4.
We reported recently that regulation by intracellular pH (pH(i)) of the murine Cl-/HCO(3)(-) exchanger AE2 requires amino acid residues 310-347 of the polypeptide's NH(2)-terminal cytoplasmic domain. We have now identified individual amino acid residues within this region whose integrity is required for regulation of AE2 by pH. 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during variation of extracellular pH (pH(o)) with unclamped or clamped pH(i), or during variation of pH(i) at constant pH(o). Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited by acid pH(o), with a value of pH(o50) = 6.87 +/- 0.05, and was stimulated up to 10-fold by the intracellular alkalinization produced by bath removal of the preequilibrated weak acid, butyrate. Systematic hexa-alanine [(A)6]bloc substitutions between aa 312-347 identified the greatest acid shift in pH(o(50)) value, approximately 0.8 pH units in the mutant (A)6 342-347, but only a modest acid-shift in the mutant (A)6 336-341. Two of the six (A)6 mutants retained normal pH(i) sensitivity of 36Cl- efflux, whereas the (A)6 mutants 318-323, 336-341, and 342-347 were not stimulated by intracellular alkalinization. We further evaluated the highly conserved region between aa 336-347 by alanine scan and other mutagenesis of single residues. Significant changes in AE2 sensitivity to pH(o) and to pH(i) were found independently and in concert. The E346A mutation acid-shifted the pH(o(0) value to the same extent whether pH(i) was unclamped or held constant during variation of pH(o). Alanine substitution of the corresponding glutamate residues in the cytoplasmic domains of related AE anion exchanger polypeptides confirmed the general importance of these residues in regulation of anion exchange by pH. Conserved, individual amino acid residues of the AE2 cytoplasmic domain contribute to independent regulation of anion exchange activity by pH(o) as well as pH(i).  相似文献   

5.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

6.
The role ofintracellular pH (pHi) in regulation of AE2 function inXenopus oocytes remains unclear. We therefore compared AE2-mediated 36Cl efflux fromXenopus oocytes during imposed variation of extracellular pH(pHo) or variation of pHi at constantpHo. Wild-type AE2-mediated 36Clefflux displayed a steep pHo vs. activity curve, withpHo(50) = 6.91 ± 0.04. SequentialNH2-terminal deletion of amino acid residues in tworegions, between amino acids 328 and 347 or between amino acids 391 and510, shifted pHo(50) to more acidic values by nearly 0.6 units. Permeant weak acids were then used to alter oocytepHi at constant pHo and were shown to beneither substrates nor inhibitors of AE2-mediated Cltransport. At constant pHo, AE2 was inhibited byintracellular acidification and activated by intracellularalkalinization. Our data define structure-function relationships withinthe AE2 NH2-terminal cytoplasmic domain, which demonstratesdistinct structural requirements for AE2 regulation by intracellularand extracellular protons.

  相似文献   

7.
Anion exchanger 1 (AE1) is the chloride/bicarbonate exchange protein of the erythrocyte membrane. By using a combination of introduced cysteine mutants and sulfhydryl-specific chemistry, we have mapped the topology of the human AE1 membrane domain. Twenty-seven single cysteines were introduced throughout the Leu708-Val911 region of human AE1, and these mutants were expressed by transient transfection of human embryonic kidney cells. On the basis of cysteine accessibility to membrane-permeant biotin maleimide and to membrane-impermeant lucifer yellow iodoacetamide, we have proposed a model for the topology of AE1 membrane domain. In this model, AE1 is composed of 13 typical transmembrane segments, and the Asp807-His834 region is membrane-embedded but does not have the usual alpha-helical conformation. To identify amino acids that are important for anion transport, we analyzed the anion exchange activity for all introduced cysteine mutants, using a whole cell fluorescence assay. We found that mutants G714C, S725C, and S731C have very low transport activity, implying that this region has a structurally and/or catalytically important role. We measured the residual anion transport activity after mutant treatment with the membrane-impermeant, cysteine-directed compound, sodium (2-sulfonatoethyl)methanethiosulfonate) (MTSES). Only two mutants, S852C and A858C, were inhibited by MTSES, indicating that these residues may be located in a pore-lining region.  相似文献   

8.
Regulation of cell pH and cell volume require homeostatic control of intracellular cations and anions. Bicarbonate transporters play an important role in these cellular functions. The SLC4 and SLC26 gene families both encode bicarbonate transporter polypeptides. The SLC4 gene family includes four Na+-independent chloride-bicarbonate exchanger genes and multiple Na+-bicarbonate cotransporter and Na+-dependent anion-exchanger genes. The acute regulatory properties of the recombinant polypeptides encoded by these genes remain little studied. The most extensively studied among them are the Na+-independent anion exchangers AE1, AE2, and AE3. The widely expressed AE2 anion exchanger participates in recovery from alkaline load and in regulatory cell volume increase following shrinkage. AE2 can also be regulated by the ammonium ion. These properties are not shared by the closely related AE1 anion exchanger of the erythrocyte and the renal collecting duct Type A intercalated cell. Structure-function studies of recombinant proteins involving chimeras, deletions, and point mutations have delineated regions of AE2, which are important in the exhibition of the regulatory properties absent from AE1. These include regions of the transmembrane domain and the N-terminal cytoplasmic domain. Noncontiguous regions in the middle of the N-terminal cytoplasmic domain are of particular importance for acute regulation by several types of stimulus.  相似文献   

9.
10.
As an adjunct to existing thin layer and column chromatographic methods for the identification of glycolipids a method that utilizes the high pH anion chromatographic (HPAEC) analysis of the oligosaccharides released from the glycolipids by endoglycoceramidase has been developed. Using a Dionex Carbo Pak PA1 column and elution with a linear gradient of sodium acetate in 0.2M NaOH, the elution times of eight neutral and fourteen acidic oligosaccharides derived from glycolipids were determined. Under these conditions the neutral oligosaccharides were well separated from each other but some of the acidic oligosaccharides had overlapping elution times. The ganglioside-derived oligosaccharides could be further identified by treating them with sialidase or by mild acid hydrolysis and reanalysing the products by HPAEC. The method was applied to the analysis of mixed bovine brain gangliosides. The procedure provides an additional approach for the initial identification of glycolipids by analysing the component oligosaccharides rather than the intact glycolipids.  相似文献   

11.
M Krieger  R E Koeppe  R M Stroud 《Biochemistry》1976,15(16):3458-3464
At pH 8.9 and 37 degrees C the half-times for tritium exchange with the C-2 protons of the histidines of trypsin are 73 days for His-57, and greater than 1000 days for His-40 and His-91. These half-times are much longer than the half-life of exchange for the C-2 proton of free histidine (2.8 days at pD 8.2), and longer than any previously reported half-time of exchange at pH greater than 8. These very low rates of exchange are discussed with reference to the refined structure of trypsin. The tritium exchange of His-57 depends on an apparent pKa of 6.6. This pKa may represent the pKa of the imidazole of His-57 in an inactive conformation of the enzyme.  相似文献   

12.
Summary The anion transport domain of the anion exchange protein (AEP) of human erythrocyte membranes (band 3, 95 kD mol wt) was probed with the substrate and affinity label pyridoxal-5-phosphate (PLP). Acting from outside, this probe labels two chymotryptic fragments of 65 and 35 kD of AEP but only the 35-kD fragment is protected from labeling by reversibly acting disulfonic stilbenes (DS). It is shown here by functional studies and by immunoblotting with anti-PLP antibodies that transmembrane gradients of anions determine the availability of a 35-kD fragmentlys residue to surface labeling by PLP, in analogy with their effects on labeling of 65-kD fragment by DS. On this basis, it is suggested that both fragments contribute to the formation of the transport domain. However, unlike DS, PLP blocks transport when reacted from within resealed membranes, indicating that the 35-kD fragment might contain components of the mobile unit of the AEP. Using impermeant fluorescence quenchers of PLP of both complexation type (anti-PLP antibodies) or collisional type (acrylamide) as topological probes for PLP-labeled sites, it is deduced that the 65-kD PLP-labeled and the 35-kD PLP-labeledlys groups are inaccessible to macromolecules from either surface, but the 65-kD PLP-lys is accessible to low molecular weight molecules from without while the 35-kD PLP-labeledlys shows accessibility primarily from within the cell surface. The studies indicate that the accommodation of a wide class of anions by AEP might be associated with the flexibility of the transport domain of the protein and its capacity to undergo transport-related conformational changes.  相似文献   

13.
14.
To elucidate the mechanism for the regulation of aspartate kinase (AK) via feedback inhibition, we constructed several chimeric enzymes between Bacillus subtilis AK II, a lysine-sensitive mesophilic enzyme, and Thermus flavus AK, a threonine-sensitive thermostable enzyme, each having the same alpha2beta2-type tetrameric structure. A chimeric AK, named BTT, composed of the chimeric alpha subunit that comprises of the N-terminal catalytic region from B. subtilis AK II and the C-terminal region from T. flavus, and the beta subunit from T. flavus, was inhibited only by threonine. Another chimeric enzyme, BT, which has a similar structure to that of BTT but lacks the beta subunit, having alpha2-type homo-dimeric structure, was also responsive only to threonine. However, the addition of threonine enhanced the activity of BT. These results indicate the regulatory function of C-terminal region and beta subunit in AK. BTT showed extremely high thermostability comparable to that of T. flavus, suggesting that the beta subunit also contributed to the stability of the AK.  相似文献   

15.
16.
Polycystin-2, the product of the human PKD2 gene, whose mutations cause autosomal dominant polycystic kidney disease, is a large conductance, Ca(2+)-permeable non-selective cation channel. Polycystin-2 is functionally expressed in the apical membrane of the human syncytiotrophoblast, where it may play a role in the control of fetal electrolyte homeostasis. Little is known, however, about the mechanisms that regulate polycystin-2 channel function. In this study, the role of pH in the regulation of polycystin-2 was assessed by ion channel reconstitution of both apical membranes of human syncytiotrophoblast and the purified FLAG-tagged protein from in vitro transcribed/translated material. A kinetic analysis of single channel currents, including dwell time histograms, confirmed two open and two close states for spontaneous channel behavior and a strong voltage dependence of the open probability of the channel (P(o)). A reduction of cis pH (pH(cis)) decreased P(o) and shifted the voltage dependence of channel function but had no effect on the single channel conductance. An increase in pH(cis), in contrast, increased NP(o) (channel number times P(o)). Elimination of the H(+) chemical gradient did not reverse the low pH(cis) inhibition of polycystin-2. Similar findings confirmed the pH effect on the in vitro translated, FLAG-tagged purified polycystin-2. The data indicate the presence of an H(+) ion regulatory site in the channel protein, which is accessible from the cytoplasmic side of the protein. This protonation site controls polycystin-2 cation-selective channel activity.  相似文献   

17.
Kuma H  Shinde AA  Howren TR  Jennings ML 《Biochemistry》2002,41(10):3380-3388
The topology of the band 3 (AE1) polypeptide of the erythrocyte membrane is not fully established despite extensive study. Residues near lysine 743 (K743) have been reported to be extracellular in some studies and cytoplasmic in others. In the work presented here, we have attempted to establish the sidedness of K743 using in situ proteolysis. Trypsin, papain, and proteinase K do not cleave band 3 at or near K743 in intact red cells, even under conditions that cause cleavage on the C-terminal side of the glycosylation site (N642) in extracellular loop 4. In contrast, trypsin sealed inside red cell ghosts cleaves at K743, as does trypsin treatment of inside-out vesicles (IOVs). The transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H(2)DIDS), acting from the extracellular side, blocks trypsin cleavage at K743 in unsealed membranes by inducing a protease-resistant conformation. H(2)DIDS added to IOVs does not prevent cleavage at K743; therefore, trypsin cleavage at K743 in IOVs is not a consequence of cleavage of right-side-out or leaky vesicles. Finally, microsomes were prepared from HEK293 cells expressing the membrane domain of AE1 lacking the normal glycosylation site. This polypeptide does not traffic to the surface membrane; trypsin treatment of microsomes containing this polypeptide produces the 20 kDa fragment, providing further evidence that K743 is exposed at the cytoplasmic surface. Therefore, the actions of trypsin on intact cells, resealed ghosts, unsealed ghosts, inside-out vesicles, and microsomes from HEK293 cells all indicate that K743 is cytoplasmic and not extracellular.  相似文献   

18.
Bax-dependent regulation of Bak by voltage-dependent anion channel 2   总被引:4,自引:0,他引:4  
Many studies have demonstrated a critical role of Bax in mediating apoptosis, but the role of Bak in regulating cancer cell apoptotic sensitivities in the presence or absence of Bax remains incompletely understood. Using isogenic cells with defined genetic deficiencies, here we show that in response to intrinsic, extrinsic, and endoplasmic reticulum stress stimuli, HCT116 cells show clear-cut apoptotic sensitivities in the order of Bax+/Bak+ > Bax+/Bak- > Bax-/Bak+ > Bax-/Bak-. Small interference RNA-mediated knockdown of Bak in Bax-deficient cells renders HCT116 cells completely resistant to apoptosis induction. Surprisingly, however, Bak knockdown in Bax-expressing cells only slightly affects the apoptotic sensitivities. Bak, like Bax, undergoes the N terminus exposure upon apoptotic stimulation in both Bax-expressing and Bax-deficient cells. Gel filtration, chemical cross-linking, and co-immunoprecipitation experiments reveal that different from Bax, which normally exists as monomers in unstimulated cells and is oligomerized by apoptotic stimulation, most Bak in unstimulated HCT116 cells exists in two distinct protein complexes, one of which contains voltage-dependent anion channel (VDAC) 2. During apoptosis, Bak and Bax form both homo- and hetero-oligomeric complexes that still retain some VDAC-2. However, the oligomeric VDAC-2 complexes are diminished, and Bak does not interact with VDAC-2 in Bax-deficient HCT116 cells. These results highlight VDAC-2 as a critical inhibitor of Bak-mediated apoptotic responses.  相似文献   

19.
20.
Oxonol and polyaminosterol drugs were examined as inhibitors of recombinant mouse AE1 and AE2 anion exchangers expressed in Xenopus laevis oocytes and were compared as inhibitors of AE1-mediated anion flux in red cells and in HL-60 cells that express AE2. The oxonols WW-781, diBA(5)C4, and diBA(3)C4 inhibited HL-60 cell Cl-/Cl- exchange with IC50 values from 1 to 7 microM, 100-1000 times less potent than their IC50 values for red cell Cl-/anion exchange. In Xenopus oocytes, diBA(5)C4 inhibited AE1-mediated Cl- efflux several hundred times more potently than that mediated by AE2. Several novel squalamine-related polyaminosterols were also evaluated as anion exchange inhibitors. In contrast to diBA(5)C4, polyaminosterol 1361 inhibited oocyte-expressed AE2 8-fold more potently than AE1 (IC50 0.6 versus 5.2 microM). The 3-fold less potent desulfo-analog, 1360, showed similar preference for AE2. It was found that 1361 also partially inhibited Cl- efflux from red cells, whereas neither polyaminosterol inhibited Cl efflux from HL60 cells. Thus, the oxonol diBA(5)C4 is >100-fold more potent as an inhibitor of AE1 than of AE2, whereas the polyaminosterols 1360 and 1361 are 8-fold more potent as inhibitors of AE2 than of AE1. Assay conditions and cell type influenced IC50 values for both classes of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号