首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Switching by parasites to novel hosts has profound effects on ecological and evolutionary disease dynamics. Switching requires that parasites are able to establish contact with novel hosts and to overcome host defenses. For most host–parasite associations, it is unclear as to what specific mechanisms prevent infection of novel hosts. Here, we show that parasitic fungal species in the genus Escovopsis, which attack and consume the fungi cultivated by fungus-growing ants, are attracted to their hosts via chemotaxis. This response is host-specific: Escovopsis spp. grow towards their natural host cultivars more rapidly than towards other closely related fungi. Moreover, the cultivated fungi secrete compounds that can suppress Escovopsis growth. These antibiotic defenses are likewise specific: in most interactions, cultivars can inhibit growth of Escovopsis spp. not known to infect them in nature but cannot inhibit isolates of their naturally infecting pathogens . Cases in which cultivars are susceptible to novel Escovopsis are limited to a narrow set of host–parasite strain combinations. Targeted chemotactic and antibiotic responses therefore explain why Escovopsis pathogens do not readily switch to novel hosts, consequently constraining long-term dynamics of host–parasite coevolution within this ancient association.  相似文献   

2.
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus‐growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.  相似文献   

3.
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ~45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range.  相似文献   

4.
Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.  相似文献   

5.
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.  相似文献   

6.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

7.

Background  

The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity.  相似文献   

8.
Coevolutionary arms races between brood parasites and hosts provide tractable systems for understanding antagonistic coevolution in nature; however, little is known about the fate of frontline antiparasite defenses when the host “wins” the coevolutionary arms race. By recreating bygone species interactions, using artificial parasitism experiments, lingering defensive behaviors that evolved in the context of parasitism can be understood and may even be used to identify the unknown agent of parasitism past. Here we present the first study of this type by evaluating lingering “frontline” nest defenses that have evolved to prevent egg laying in a former brood parasite host. The Australian reed warbler Acrocephalus australis is currently not parasitized but is known to exhibit fine-tuned egg discrimination—a defensive behavior indicative of a past brood parasite–host arms race and common in closely related parasitized species. Here, using 3D-printed models of adult brood parasites, we examined whether the Australian reed warbler also exhibits frontline defenses to adult brood parasites, and whether we could use these defenses to identify the warbler’s “ghost of parasitism past.” Our findings provide evidence that the Australian reed warbler readily engages in frontline defenses that are considered adaptive specifically in the context of brood parasitism. However, individuals were unable to discriminate between adults of different brood parasite species at their nest. Overall, our results demonstrate that despite a relaxation in selection, defenses against brood parasitism can be maintained across multiple stages of the host’s nesting cycle, and further suggest that, in accordance with previous findings, that learning may be important for fine-tuning frontline defense.  相似文献   

9.
Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases.  相似文献   

10.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host–parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of Varroa destructor, a novel parasite of Apis mellifera originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host. To do so, mites infesting two categories of hosts in four European regions were compared: (a) adapted hosts surviving through means of natural selection, thereby expected to impose strong selective pressure on the mites, and (b) treated host populations, surviving mite infestations because acaricides are applied, therefore characterized by a relaxed selection imposed by the host on the mites. Significant genetic divergence was found across regions, partially reflecting the invasion pattern of V. destructor throughout Europe and indicating local adaptation of the mite to the host populations. Additionally, varying degrees of genotypic changes were found between mites from adapted and treated colonies. Altogether, these results indicate that V. destructor managed to overcome the genetic bottlenecks following its introduction in Europe and that host‐mediated selection fostered changes in the genetic structure of this mite at diverse geographic scales. These findings highlight the potential of parasites to adapt to their local host populations and confirm that adaptations developed within coevolutionary dynamics are a major determinant of population genetic changes.  相似文献   

11.
Host immune defenses are important components of host–parasite interactions that affect the outcome of infection and may have fitness consequences for hosts when increased allocation of resources to immune responses undermines other essential life processes. Research on host–parasite interactions in large free‐ranging wild mammals is currently hampered by a lack of verified noninvasive assays. We successfully adapted existing assays to measure innate and adaptive immune responses produced by the gastrointestinal mucosa in spotted hyena (Crocuta crocuta) feces, including enzyme‐linked immunosorbent assays (ELISAs), to quantify fecal immunoglobulins (total IgA, total IgG) and total fecal O‐linked oligosaccharides (mucin). We investigated the effect of infection load by an energetically costly hookworm (Ancylostoma), parasite richness, host age, sex, year of sampling, and clan membership on immune responses and asked whether high investment in immune responses during early life affects longevity in individually known spotted hyenas in the Serengeti National Park, Tanzania. Fecal concentrations of IgA, IgG, and mucin increased with Ancylostoma egg load and were higher in juveniles than in adults. Females had higher mucin concentrations than males. Juvenile females had higher IgG concentrations than juvenile males, whereas adult females had lower IgG concentrations than adult males. High IgA concentrations during the first year of life were linked to reduced longevity after controlling for age at sampling and Ancylostoma egg load. Our study demonstrates that the use of noninvasive methods can increase knowledge on the complex relationship between gastrointestinal parasites and host local immune responses in wild large mammals and reveal fitness‐relevant effects of these responses.  相似文献   

12.
Leaf‐cutting ants and their fungal crops are a textbook example of a long‐term obligatory mutualism. Many microbes continuously enter their nest containing the fungal cultivars, destabilizing the symbiosis and, in some cases, outcompeting the mutualistic partners. Preferably, the ant workers should distinguish between different microorganisms to respond according to their threat level and recurrence in the colony. To address these assumptions, we investigated how workers of Atta sexdens sanitize their fungal crop toward five different fungi commonly isolated from the fungus gardens: Escovopsis sp., Fusarium oxysporum, Metarhizium anisopliae, Trichoderma spirale, and Syncephalastrum sp. Also, to investigate the plasticity of these responses toward recurrences of these fungi, we exposed the colonies with each fungus three times fourteen days apart. As expected, intensities in sanitization differed according to the fungal species. Ants significantly groom their fungal crop more toward F. oxysporum, M. anisopliae, and Syncephalastrum sp. than toward Escovopsis sp. and T. spirale. Weeding, self‐, and allogrooming were observed in less frequency than fungus grooming in all cases. Moreover, we detected a significant increase in the overall responses after repeated exposures for each fungus, except for Escovopsis sp. Our results indicate that A. sexdens workers are able to distinguish between different fungi and apply distinct responses to remove these from the fungus gardens. Our findings also suggest that successive exposures to the same antagonist increase hygiene, indicating plasticity of ant colonies'' defenses to previously encountered pathogens.  相似文献   

13.
  1. Parasites are integral to ecosystem functioning yet often overlooked. Improved understanding of host–parasite associations is important, particularly for wide‐ranging species for which host range shifts and climate change could alter host–parasite interactions and their effects on ecosystem function.
  2. Among the most widely distributed mammals with diverse diets, gray wolves (Canis lupus) host parasites that are transmitted among canids and via prey species. Wolf–parasite associations may therefore influence the population dynamics and ecological functions of both wolves and their prey. Our goal was to identify large‐scale processes that shape host–parasite interactions across populations, with the wolf as a model organism.
  3. By compiling data from various studies, we examined the fecal prevalence of gastrointestinal parasites in six wolf populations from two continents in relation to wolf density, diet diversity, and other ecological conditions.
  4. As expected, we found that the fecal prevalence of parasites transmitted directly to wolves via contact with other canids or their excreta was positively associated with wolf density. Contrary to our expectations, the fecal prevalence of parasites transmitted via prey was negatively associated with prey diversity. We also found that parasite communities reflected landscape characteristics and specific prey items available to wolves.
  5. Several parasite taxa identified in this study, including hookworms and coccidian protozoans, can cause morbidity and mortality in canids, especially in pups, or in combination with other stressors. The density–prevalence relationship for parasites with simple life cycles may reflect a regulatory role of gastrointestinal parasites on wolf populations. Our result that fecal prevalence of parasites was lower in wolves with more diverse diets could provide insight into the mechanisms by which biodiversity may regulate disease. A diverse suite of predator–prey interactions could regulate the effects of parasitism on prey populations and mitigate the transmission of infectious agents, including zoonoses, spread via trophic interactions.
  相似文献   

14.
Parasite host shifts can impose a high selective pressure on novel hosts. Even though the coevolved systems can reveal fundamental aspects of host–parasite interactions, research often focuses on the new host–parasite relationships. This holds true for two ectoparasitic mite species, Varroa destructor and Varroa jacobsonii, which have shifted hosts from Eastern honey bees, Apis cerana, to Western honey bees, Apis mellifera, generating colony losses of these pollinators globally. Here, we study infestation rates and reproduction of V. destructor and V. jacobsonii haplotypes in 185 A. cerana colonies of six populations in China and Thailand to investigate how coevolution shaped these features. Reproductive success was mostly similar and low, indicating constraints imposed by hosts and/or mite physiology. Infestation rates varied between mite haplotypes, suggesting distinct local co‐evolutionary scenarios. The differences in infestation rates and reproductive output between haplotypes did not correlate with the virulence of the respective host‐shifted lineages suggesting distinct selection scenarios in novel and original host. The occasional worker brood infestation was significantly lower than that of drone brood, except for the V. destructor haplotype (Korea) from which the invasive lineage derived. Whether mites infesting and reproducing in atypical intraspecific hosts (i.e., workers and queens) actually predisposes for and may govern the impact of host shifts on novel hosts should be determined by identifying the underlying mechanisms. In general, the apparent gaps in our knowledge of this coevolved system need to be further addressed to foster the adequate protection of wild and managed honey bees from these mites globally.  相似文献   

15.
Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.  相似文献   

16.
To combat parasitism hosts often rely on their immune system, which is the last line of defense. However, the immune system may not always be effective, and other non-immunological defenses might be favored to reduce the cost of parasite infection. Here we report that larvae of the moth Lobesia botrana can rapidly accelerate their development and reach maturity earlier in response to cues perceived at a distance from parasitoids. Such a phenotypically plastic life history shift, induced by the perception of deadly enemies in the environment, is likely to be an adaptive defensive strategy to prevent parasitoid attack, and has important implications in host–parasite dynamics.  相似文献   

17.
Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.  相似文献   

18.
Species of Cosmospora are parasites of other fungi (mycoparasites), including species belonging to the Xylariales. Based on prior taxonomic work, these fungi were determined to be highly host specific. We suspected that the association of Cosmospora and their hosts could not be a result of random chance, and tested the cospeciation of Cosmospora and the their hosts with contemporary methods (e.g., ParaFit, PACo, and Jane). The cophylogeny of Cosmospora and their hosts was found to be congruent, but only host‐parasite links in more recent evolutionary lineages of the host were determined as coevolutionary. Reconciliation reconstructions determined at least five host‐switch events early in the evolution of Cosmospora. Additionally, the rates of evolution between Cosmospora and their hosts were unequal. This pattern is more likely to be explained by pseudocospeciation (i.e., host switches followed by cospeciation), which also produces congruent cophylogenies.  相似文献   

19.
In coevolutionary arms-races, reciprocal ecological interactions and their fitness impacts shape the course of phenotypic evolution. The classic example of avian host–brood parasite interactions selects for host recognition and rejection of increasingly mimetic foreign eggs. An essential component of perceptual mimicry is that parasitic eggs escape detection by host sensory systems, yet there is no direct evidence that the avian visual system covaries with parasitic egg recognition or mimicry. Here, we used eye size measurements collected from preserved museum specimens as a metric of the avian visual system for species involved in host–brood parasite interactions. We discovered that (i) hosts had smaller eyes compared with non-hosts, (ii) parasites had larger eyes compared with hosts before but not after phylogenetic corrections, perhaps owing to the limited number of independent evolutionary origins of obligate brood parasitism, (iii) egg rejection in hosts with non-mimetic parasitic eggs positively correlated with eye size, and (iv) eye size was positively associated with increased avian-perceived host–parasite eggshell similarity. These results imply that both host-use by parasites and anti-parasitic responses by hosts covary with a metric of the visual system across relevant bird species, providing comparative evidence for coevolutionary patterns of host and brood parasite sensory systems.  相似文献   

20.
The size, structure and distribution of host populations are key determinants of the genetic composition of parasite populations. Despite the evolutionary and epidemiological merits, there has been little consideration of how host heterogeneities affect the evolutionary trajectories of parasite populations. We assessed the genetic composition of natural populations of the parasite Schistosoma mansoni in northern Senegal. A total of 1346 parasites were collected from 14 snail and 57 human hosts within three villages and individually genotyped using nine microsatellite markers. Human host demographic parameters (age, gender and village of residence) and co-infection with Schistosoma haematobium were documented, and S. mansoni infection intensities were quantified. F-statistics and clustering analyses revealed a random distribution (panmixia) of parasite genetic variation among villages and hosts, confirming the concept of human hosts as ‘genetic mixing bowls'' for schistosomes. Host gender and village of residence did not show any association with parasite genetics. Host age, however, was significantly correlated with parasite inbreeding and heterozygosity, with children being more infected by related parasites than adults. The patterns may be explained by (1) genotype-dependent ‘concomitant immunity'' that leads to selective recruitment of genetically unrelated worms with host age, and/or (2) the ‘genetic mixing bowl'' hypothesis, where older hosts have been exposed to a wider variety of parasite strains than children. The present study suggests that host-specific factors may shape the genetic composition of schistosome populations, revealing important insights into host–parasite interactions within a natural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号