首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a generic transient transfection process at 100 L scale, using HEK293-EBNA cells and PEI as the transfection reagent for the production of recombinant IgG. The process, including large-scale plasmid preparation, expression at bioreactor scale, capture, purification and, if necessary, endotoxin removal allows reproducible production of more than 0.5 g IgG for in vitro and in vivo studies. We compared the performance of two HEK cell lines, investigated the effect of conditioned medium, optimized the DNA:PEI ratio and implemented a feed strategy to prolong the culture time to increase product yield. The transient transfection protocol developed enables a closed process from seeding culture to protein capture. The challenge of performing a medium exchange before transfection at large scale is solved by applying a continuous centrifugation step between the seeding bioreactor and the production bioreactor. After 7–8 days the harvest and capture is performed in a one-step operation using a Streamline expanded bed chromatography system. Following a polishing step the purified antibody is transferred to the final formulation buffer. The method has shown to be reproducible at 10, 50, and 100 L scale expressing between 5 and 8 mg L−1 IgG.  相似文献   

2.
3.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

4.
Using transient expression, high amounts (>20 mg/mL) of secreted anti-human Rhesus-D IgG1 were produced in a suspension-adapted HEK293 EBNA cell line (Meissner et al., Biotechnol Bioeng 75: 197-203, 2001). Time of harvest was 3 days after transfection. For the estimation of transfection efficiencies, we routinely co-transfected EGFP reporter DNA. At higher reporter plasmid concentrations, >2% of total transfecting plasmid DNA, a substantial reduction of recombinant antibody synthesis, was observed. This phenomenon was investigated in detail by co-expressing various green fluorescent protein (GFP) reporter constructs, which were targeted at different subcellular locations. Enhanced and humanized GFPs targeted to either the endoplasmic reticulum, the cytosol, or the nucleus reduced recombinant antibody production by 30 to 40% when present at higher concentrations in the transfection solution. The most severe effects were observed when the co-transfected EGFP was targeted to the endoplasmic reticulum, leading to a reduction of up to 80% in the presence of only 5% of reporter DNA. Interestingly, one nuclear-targeted GFP variant that was not codon optimized for expression in human cell lines could be added, to up to almost half of the total amount of transfecting DNA, without adverse effect on antibody production. Although the minimum amount of this reporter DNA needed for fluorescence reading was 10 times higher than for the other variants, it provided a much broader quantity range within which the transfection process could be studied without being negatively affected.  相似文献   

5.
Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.  相似文献   

6.
DNA extracted and purified for vaccination, gene therapy or transfection of cultured cells has to meet different criteria. We describe herein, a scalable process for the primary extraction of plasmid DNA suitable for transient expression of recombinant protein. We focus on the scale up of alkaline lysis for the extraction of plasmid DNA from Escherichia coli, and use a simple stirred tank reactor system to achieve this. By adding a series of three precipitations (including a selective precipitation step with ammonium acetate) we enrich very quickly the plasmid DNA content in the extract. The process has been thus far used to extract up to 100 mg of plasmid from 1.5 l of clarified lysate, corresponding to an E.coli bioreactor fermentation of 3 l. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
An efficient rapid protein expression system is crucial to support early drug development. Transient gene expression is an effective route, and to facilitate the use of the same host cells as for subsequent stable cell line development, we have created a high‐yielding Chinese hamster ovary (CHO) transient expression system. Suspension‐adapted CHO‐K1 host cells were engineered to express the gene encoding Epstein‐Barr virus (EBV) nuclear antigen‐1 (EBNA‐1) with and without the coexpression of the gene for glutamine synthetase (GS). Analysis of the transfectants indicated that coexpression of EBNA‐1 and GS enhanced transient expression of a recombinant antibody from a plasmid carrying an OriP DNA element compared to EBNA‐1‐only transfectants. This was confirmed with the retransfection of an EBNA‐1‐only cell line with a GS gene. The retransfected cell lines showed an increase in transient expression when compared with that of the EBNA‐1‐only parent. The transient expression process for the best CHO transient cell line was further developed to enhance protein expression and improve scalability by optimizing the transfection conditions and the cell culture process. This resulted in a scalable CHO transient expression system that is capable of expressing 2 g/L of recombinant proteins such as antibodies. This system can now rapidly provide gram amounts of recombinant antibody to supply preclinical development studies that has comparable product quality to antibody produced from a stably transfected CHO cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:132–141, 2014  相似文献   

8.
Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.  相似文献   

9.
One of the major constraints to performing large-scale transfections of cultured mammalian cells for the transient expression of recombinant proteins is the production of large quantities of purified plasmid DNA. In this report partially purified plasmid DNA was prepared by a method that combines alkaline lysis of E. coli with standard precipitation techniques. The efficiency of calcium phosphate-DNA co-precipitate formation with crude DNA was similar to that observed for pure DNA, but precipitate formed with crude DNA also contained RNA. The transfection of adherent and suspension-adapted HEK293-EBNA cells with partially purified pEGFPN1 resulted in levels of transient GFP expression equivalent to those achieved with pure DNA. In addition, the co-transfection of 1-200 ml cultures of suspension-adapted HEK293-EBNA cells with two different plasmids encoding the heavy and light chain genes of anti-human RhD IgG1, respectively, yielded similar IgG titers with pure and partially purified plasmid DNA. Finally, it was observed that suspension-adapted cells were more tolerant to the presence of RNA in the plasmid preparations than were adherent cells. These findings are relevant to the field of DNA transfection, including applications ranging from high-throughput screening to large-scale transient protein expression.  相似文献   

10.
The generation of transgenic cell lines is acquired by facilitating the uptake and integration of DNA. Unfortunately, most of the systems generating stable expression systems are cost and time-consuming and transient expression is optimized to generate milligram amounts of the recombinant protein. Therefore we improved and compared two transfection systems, one based on cationic liposomes consisting of DOTAP/DOPE and the second one on polyethylenimine (PEI). Both systems have been used as chemically defined transfection systems in combination with serum-free cultivated host cell line. At first we had determined the toxicity and ideal ratio of DNA to PEI followed by determination of the optimal transfection conditions in order to achieve maximum transfection efficiency. We then directly compared DOTAP/DOPE and PEI in transient transfection experiments using enhanced green fluorescence protein (EGFP) and a human monoclonal antibody, mAb 2F5, as a model protein. The results which were achieved in case of EGFP were more than 15% transfectants at a viability of 85%. Despite the fact that expression of the mAb was found negligible we used both techniques to generate stable mAb 2F5 expressing cell lines that underwent several cycles of screening and amplification with methotrexate, and resulted in cell lines with similar volumetric production titers. These experiments serve to demonstrate the potential of stable cell lines even in case where the transient systems did not show satisfying results.  相似文献   

11.
Here we describe a simplified method for transient gene expression (TGE) in suspension-adapted Chinese hamster ovary (CHO) cells using polyethylenimine (PEI) for DNA delivery. Both the transfection and production phases of the bioprocess were performed at a density of 4 × 10? cells/mL at 31 °C. In addition, the amounts of both PEI and plasmid DNA were reduced up to 50% on a per cell basis compared to previously published protocols from this laboratory, resulting in higher cell viability after transfection and higher volumetric recombinant protein yields. In batch cultures of up to 14 days, reproducible recombinant antibody yields up to 300 mg/L were achieved at small scale (5 mL) and up to 250 mg/L at large scale (500 mL). The simplicity and improved yields are expected to increase the utility of CHO cells for the rapid production of recombinant proteins at larger scales by TGE.  相似文献   

12.
Sun X  Goh PE  Wong KT  Mori T  Yap MG 《Biotechnology letters》2006,28(11):843-848
Enhanced green fluorescence protein (GFP) and erythropoietin (EPO) were used as reporters to assess and improve transient gene expression in HEK 293 EBNA1 cells. The production of EPO only lasted 3 days and reached 18.1 mg/l in suspension cultures in 1 l batch bioreactors. However, GFP expression examined in well-plate experiments persisted for 12 days in transfected cells but decreased rapidly within the next 15 days. These results suggest that the retaining of a plasmid in cells may not be a limiting factor for protein expression in large-scale transient transfection. To improve cell maintenance and protein expression, a fed-batch culture was performed using an enriched medium, a mixture of equal volumes of 293 SFM II medium and a 5 × amino acid solution prepared based on DMEM/F12 medium formula. EPO reached 33.6 mg/l, representing 86% increase over that of the batch culture. Moreover, the total amount of EPO produced was increased by 165% in view of the volume increase in the fed-batch culture. The serum-free medium used in this work enables cells growing well and transfection without medium change. Thus, the process reported here is simple and easy to scale up.  相似文献   

13.
Cheng L  Sun X  Yi X  Zhang Y 《Biotechnology letters》2011,33(8):1559-1564
Large-scale transient gene expression of recombinant protein in mammalian cells requires a great amount of plasmid. An economical method for large-scale plasmid preparation, based on fed-batch fermentation and an improved plasmid extraction process, has been established. Fed-batch growth of E. coli was carried out in 5 l bioreactor by controlling the glucose concentration below 1 g l−1 after the feeding was started. Plasmid yields of 490 and 580 mg l−1 were achieved with two strains of E. coli cells bearing pCEP4-EGFP and pID-EG respectively, representing 24.5- and 26-fold increases over those of the batch culture in shake-flask. To improve the procedure for large-scale preparation of plasmid DNA, addition of RNase to resuspension buffer and ultrafiltration of clarified lysate were adopted, and the quality of the resultant plasmid was comparable to that of commercial kit as disclosed in the small-scale transient transfection. This plasmid production process has great potential in the large scale transient gene expression which needs a large quantity of plasmid DNA.  相似文献   

14.
Here, we report the development of a large-scale transient expression platform utilizing Chinese hamster ovary (CHO) cells. The majority of recombinant proteins and antibodies that are produced for preclinical models and clinical trials are expressed in stably transfected CHO cells. A protocol for transient transfection of CHO cells that is rapid, reproducible, and cost-effective would therefore streamline the process from research to development and help avoid any potential host species induced variation in the molecule of interest. CHO cells were adapted to grow in serum-free suspension conditions in spinner flask cultures in a proprietary in-house developed growth medium. In developing this transient transfection protocol, the parameters optimized included the transfection reagent of choice, the cell density at the time of transfection, the plasmid DNA concentration, and the transfection reagent concentration. Using this optimized protocol, we have expressed recombinant proteins, including antibodies, at an expression level of up to 9.4 mg/L. We also report transient transfections from 500 mL working volume (w.v.) up to 20 L w.v. in a WAVETM bioreactor. Using this optimized protocol, it is possible to rapidly (within 10 d) produce up to 100 mg of recombinant protein for further study.  相似文献   

15.
Transient transfection allows for fast production of recombinant proteins. However, the current bottlenecks in transient transfection are low titers and low specific productivity compared to stable cell lines. Here, we report an improved transient transfection protocol that yields titers exceeding 1 g/l in HEK293E cells. This was achieved by combining a new highly efficient polyethyleneimine (PEI)-based transfection protocol, optimized gene expression vectors, use of cell cycle regulators p18 and p21, acidic Fibroblast Growth Factor, exposure of cells to valproic acid and consequently the maintenance of cells at high cell densities (4 million cells/ml). This protocol was reproducibly scaled-up to a working volume of 2 l, thus delivering >1 g of purified protein just 2 weeks after transfection. This is the fastest approach to gram quantities of protein ever reported from cultivated mammalian cells and could initiate, upon further scale-up, a paradigm shift in industrial production of such proteins for any application in biotechnology.  相似文献   

16.
GFP has often been used as a marker of gene expression, protein localization in living and fixed tissues as well as for protein targeting in intact cells and organisms. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. Many cells, including bacterial, fungal, plant, insect and mammalian cells, can express recombinant GFP (rGFP) efficiently. Several methods and procedures have been developed to purify the rGFP or recombinant proteins fused with GFP tag. However, most current GFP purification methods are limited by poor yields and low purity. In the current study, we developed an improved purification method, utilizing a FMU-GFP.5 monoclonal antibody (mAb) to GFP together with a mAb-coupled affinity chromatography column. The method resulted in a sample that was highly pure (more than 97% homogeneity) and had a sample yield of about 90%. Moreover, the GFP epitope permitted the isolation of almost all the active recombinant target proteins fused with GFP, directly and easily, from the crude cellular sources. Our data suggests this method is more efficient than any currently available method for purification of GFP protein.  相似文献   

17.
We describe a defined medium that allows efficient DNA transfections in COS cells and transient expression of the corresponding recombinant protein in serum-free conditions. With a modified DEAE-dextran/chloroquine method, we obtained 80% more transfected cells expressing the recombinant human interleukin-2 receptor than with transfection with cationic liposomes, one of the most efficient techniques to date. The absence of serum in the culture medium should reduce subsequent purification steps for production of recombinant mammalian proteins. Moreover, it should allow investigations dealing with the role of serum or other exogenous factors on mRNA stability or post-translation events during protein synthesis.  相似文献   

18.
Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO’s capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system’s capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.  相似文献   

19.
During early preclinical development of therapeutic proteins, representative materials are often required for process development, such as for pharmacokinetic/pharmacodynamic studies in animals, formulation design, and analytical assay development. To rapidly generate large amounts of representative materials, transient transfection is commonly used. Because of the typical low yields with transient transfection, especially in CHO cells, here we describe an alternative strategy using stable transfection pool technology. Using stable transfection pools, gram quantities of monoclonal antibody (Mab) can be generated within 2 months post‐transfection. Expression levels for monoclonal antibodies can be achieved ranging from 100 mg/L to over 1000 mg/L. This methodology was successfully scaled up to a 200 L scale using disposable bioreactor technology for ease of rapid implementation. When fluorescence‐activated cell sorting was implemented to enrich the transfection pools for high producers, the productivity could be improved by about three‐fold. We also found that an optimal production time window exists to achieve the highest yield because the transfection pools were not stable and productivity generally decreased over length in culture. The introduction of Universal chromatin‐opening elements elements into the expression vectors led to significant productivity improvement. The glycan distribution of the Mab product generated from the stable transfection pools was comparable to that from the clonal stable cell lines. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Serum-free large-scale transient transfection of CHO cells   总被引:11,自引:0,他引:11  
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号