首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Two families with X-linked dominant hypophosphatemia (McKusick No. *30780) were investigated for linkage of the disease locus with several marker genes defined by cloned, single-copy DNA sequences derived from defined regions of the X chromosome. Close linkage was found with DNA markers DXS41 (p99-6) and DXS43 (pD2) at Xp22, suggesting a location of the HPDR gene on the distal short arm of the X chromosome.  相似文献   

2.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The X chromosome pair was identified in diakinesis/metaphase I stage mouse oocytes using a repeat sequence DNA probe and fluorescence in situ hybridisation. Chiasma positions along the X bivalent were measured in 57 oocytes from 4 females. Overall, our observations showed that while there were no obvious hotspots for chiasma formation along the X chromosome, there was a tendency to favour the distal end. Minimum inter-chiasma distances were substantial indicating the occurrence of strong genetic interference. Estimates of both genetic distances and recombination fractions for any interval along the chromosome can be calculated from the chiasma data. The average chiasma frequency for the X bivalent was 1.37 giving an estimated total genetic map length of 68.5 cM. In general, the pattern of chiasma distribution along the X chromosome resembled that anticipated from recombination distances in published consensus linkage maps. There were, however, some intriguing differences between the two approaches. The reason for these discrepancies are unknown but may be related to lack of precision in cytogenetic mapping of loci, inter-strain and/or interspecies differences in the genetic controls over the distribution of crossover events. One advantage of the chiasma analysis approach is its suitability for investigating these problems.  相似文献   

4.
We have used radiation hybrid (RH) mapping and pulsed-field gel electrophoresis (PFGE) to determine the order and positions of 28 DNA markers from the distal region of the long arm of human chromosome 21. The maps generated by these two methods are in good agreement. This study, combined with that of D. R. Cox et al. (1990, Science 250:245-250), results in an RH map that covers the long arm of chromosome 21 (21q). We have used a subtelomeric probe to show that our map includes the telomere and have identified single-copy genes and markers within 200 kbp of the telomere. Comparison of the physical and RH maps with genetic linkage maps shows "hot spots" of meiotic recombination in the distal region, one of which is close to the telomere, in agreement with previous cytogenetic observations of increased recombination frequency near telomeres.  相似文献   

5.
Summary We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X.  相似文献   

6.
Several genes expressed in kidney and other tissues determine phosphate homeostasis in extracellular fluid. The major form of inherited hypophosphatemia in humans involves an X-linked locus (HPDR, Xp22.31-p21.3). It has two murine homologues (Hyp and Gy) which map to closely-linked but separate loci (crossover value 0.4%-0.8%). Both murine mutations impair Na(+)-phosphate cotransport in renal brush border membrane; an associated renal disorder of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) metabolism has been characterized in Hyp mice. Whereas experiments with cultured Hyp renal epithelium indicate that the gene is expressed in kidney, studies showing the development of the mutant renal phenotype in normal mice parabiosed to Hyp mice implicate a circulating factor; these findings can be reconciled if the humoral factor is of renal origin. The gene dose effect of HPDR, Hyp and Gy on serum phosphorus values is consistently deviant and heterozygotes resemble affected hemizygotes. The deviant effect is also seen on renal phosphate transport; all mutant females (Hyp/Hyp and Hyp/+) have similar phenotypes. On the other hand, there is a normal gene dose effect of HPDR in mineralized tissue; tooth PRATIO (pulp area/tooth area) values for heterozygotes are distributed between those for affected males and normals. The tooth data imply that the X chromosome locus is expressed in both renal and non-renal cells. The polypeptide product of the X chromosome gene(s) is still unknown.  相似文献   

7.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

8.
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus ( SEX ), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy - 163 marker, which maps close to SEX , was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.  相似文献   

9.
Sheldahl LA  Weinreich DM  Rand DM 《Genetics》2003,165(3):1195-1208
Surveys of nucleotide polymorphism and divergence indicate that the average selection coefficient on Drosophila proteins is weakly positive. Similar surveys in mitochondrial genomes and in the selfing plant Arabidopsis show that weak negative selection has operated. These differences have been attributed to the low recombination environment of mtDNA and Arabidopsis that has hindered adaptive evolution through the interference effects of linkage. We test this hypothesis with new sequence surveys of proteins lying in low recombination regions of the Drosophila genome. We surveyed >3800 bp across four proteins at the tip of the X chromosome and >3600 bp across four proteins on the fourth chromosome in 24 strains of D. melanogaster and 5 strains of D. simulans. This design seeks to study the interaction of selection and linkage by comparing silent and replacement variation in semihaploid (X chromosome) and diploid (fourth chromosome) environments lying in regions of low recombination. While the data do indicate very low rates of exchange, all four gametic phases were observed both at the tip of the X and across the fourth chromosome. Silent variation is very low at the tip of the X (thetaS = 0.0015) and on the fourth chromosome (thetaS = 0.0002), but the tip of the X shows a greater proportional loss of variation than the fourth shows relative to normal-recombination regions. In contrast, replacement polymorphism at the tip of the X is not reduced (thetaR = 0.00065, very close to the X chromosome average). MK and HKA tests both indicate a significant excess of amino acid polymorphism at the tip of the X relative to the fourth. Selection is significantly negative at the tip of the X (Nes = -1.53) and nonsignificantly positive on the fourth (Nes approximately 2.9), analogous to the difference between mtDNA (or Arabidopsis) and the Drosophila genome average. Our distal X data are distinct from regions of normal recombination where the X shows a deficiency of amino acid polymorphism relative to the autosomes, suggesting more efficient selection against recessive deleterious replacement mutations. We suggest that the excess amino acid polymorphism on the distal X relative to the fourth chromosome is due to (1) differences in the mutation rate for selected mutations on the distal X or (2) a greater relaxation of selection from stronger linkage-related interference effects on the distal X. This relaxation of selection is presumed to be greater in magnitude than the difference in efficiency of selection between X-linked vs. autosomal selection.  相似文献   

10.
Amelogenins are hydrophobic, proline-rich proteins that are the primary biosynthetic products of ameloblasts. These cells are responsible for the formation of tooth enamel, and amelogenins play an important role in the process of biomineralization. A cDNA, corresponding to the mouse 26-kDa amelogenin, has been molecularly cloned and sequenced. Southern blot analysis of genomic DNA from the mouse using this cDNA as a probe indicates that there is only one mouse amelogenin (Amel) gene. This paper describes restriction site variation for the Amel gene that we have identified between C57BL/6 and M. spretus and the segregation of that variation as an X-chromosome gene. The position of the amelogenin locus (Amel) relative to the loci for alpha-galactosidase (Ags), proteolipoprotein (Plp), and the random genomic probe DXWas31 has been determined. Amel is established as: (1) the most distal locus in the genetic map of the mouse X chromosome, (2) lying proximal to the X:Y pairing region, and (3) being restricted to the mouse X chromosome.  相似文献   

11.
One hundred fourteen progeny from an interspecific backcross between laboratory mice and M. spretus were typed for six markers spanning most of mouse Chromosome (Chr) 16. Additional maps of 9–10 markers of this chromosome were derived from analysis of over 500 progeny from four backcrosses between inbred laboratory strains and members of the Mus musculus group, M.m. musculus and M.m. molossinus (subspecies). The results of these analyses confirmed the gene order: (CEN)-Prm-1/Prm-2-Igl-1-Smst-Mtv-6-Gap43-Pit-1(dw)-D21S16h-App-Sod-1-Ets-2-Mx. Maps produced from these five crosses were of similar lengths, but recombination in several regions was affected by sex of the F1 parent or by the combination of strains used in the cross. As reported previously, recombination frequencies were elevated significantly at the distal end of the chromosome in a cross using F1 males. The male map showed significant compression in the interval Smst to Gap43. Both male and female intersubspecific maps were expanded near the proximal and distal ends of the chromosome relative to the interspecific cross. The spretus cross was compressed in the proximal interval, Prm-1-Igl-1-Smst, and was slightly expanded in the Smst-Gap43 interval, relative to intersubspecific crosses using F1 females. Female intersubspecific maps were expanded about 50% near the distal end of the chromosome when compared to the interspecific cross. The expansion or compression of maps using different strain or sex combinations has implications for the efficient production of high resolution recombinational maps of the mouse genome.  相似文献   

12.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

13.
Cytological analysis of the mouse Y* chromosome revealed a complex rearrangement involving acquisition of a functional centromere and centromeric heterochromatin and attachment of this chromosomal segment to the distal end of a normal Y* chromosome. This rearrangement positioned the Y* short-arm region at the distal end of the Y* chromosome and the pseudoautosomal region interstitially, just distal to the newly acquired centromere. In addition, the majority of the pseudoautosomal region was inverted. Recombination between the X and the Y* chromosomes generates two new sex chromosomes: (1) a large chromosome comprised of the X chromosome attached at its distal end to all of the Y* chromosome but missing the centromeric region (XY*) and (2) a small chromosome containing the centromeric portion of the Y* chromosome attached to G-band-negative material from the X chromosome (YX). Mice that inherit the XY* chromosome develop as sterile males, whereas mice that inherit the Y*X chromosome develop as fertile females. Recovery of equal numbers of recombinant and nonrecombinant offspring from XY* males supports the hypothesis that recombination between the mammalian X and Y chromosomes is necessary for primary spermatocytes to successfully complete spermatogenesis and form functional sperm.  相似文献   

14.
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.  相似文献   

15.
Shiverer gene maps near the distal end of chromosome 18 in the house mouse   总被引:7,自引:0,他引:7  
Several mouse mutations cause unstable locomotion, tremor, seizures, and a reduced lifespan because of deficient myelin formation in the central nervous system. Mutant alleles at the shiverer (shi) locus are the only ones in this series with a selective molecular defect, namely, in myelin basic proteins (MBPs), which are virtually absent in shi homozygotes and 50% reduced in heterozygotes. In the present study, backcross and intercross matings indicate recombination of 21.2 +/- 3.3% between myelin deficient, shimld, and fused phalanges, syfp, a marker near the middle of chromosome 18. Recombination of shimld with twirler (Tw), a marker near the centromere, is 45.7 +/- 4.9%. Thus, the shi locus maps near the distal end of mouse chromosome 18 and is the first available marker for this region. Given the evidence of other workers that an MBP locus maps to the same mouse chromosome, and that part of this chromosome may be syntenic with an MBP-PEPA region on human chromosome 18, it is likely that shi is in or near an MBP gene.  相似文献   

16.
The locus recognized by the probe OS-3 is assigned to chromosome 10 both by Southern blot analysis of a panel of somatic cell hybrid DNAs and by genetic linkage to markers already assigned to chromosome 10. In Caucasians this probe recognizes a three-allele TaqI RFLP as well as two-allele BanII and RsaI RFLPs which are both in strong linkage disequilibrium with each other and with the TaqI RFLP. The D10S20 locus defined by this probe maps 5.5 cM distal to D10S4 on the long arm of chromosome 10. Because this human clone hybridizes with mouse genomic DNA, it will be useful in comparative mapping studies.  相似文献   

17.
A mouse cDNA probe homologous to the human MCF2 transforming sequence has been identified and partially cloned, and is used here to localize the gene on the mouse X chromosome. The human gene has been physically mapped to within 60 kb of the gene for coagulation factor IX, within a large conserved linkage group between the mouse and human genomes which extends from HPRT to G6PD on the X chromosomes of both mammalian species. In situ hybridization of the mouse Mcf-2 probe onto mouse metaphase chromosomes indicates that this gene lies in the same region of the X chromosome as Cf-9, the mouse gene for coagulation factor IX. Moreover, segregation of species-specific genomic DNA polymorphisms for Mcf-2 and Cf-9 in a total of 203 individuals derived from two large interspecific mouse backcross populations (which are also segregating for 17 other X-linked molecular markers) demonstrates that the mouse genes are separated by only 0.5 +/- 0.5 cM. Despite this short distance we were able to order Mcf-2 and Cf-9 relative to one another and other genes in this region. The mouse gene order Hprt-Cf-9-Mcf-2-G6pd predicts a similar ordering of genes on the human X chromosome, a gene order which has only recently been demonstrated by physical mapping. Thus, the map location and linkage relationships of the Mcf-2 gene are similar in man and mouse, and this unique protooncogenic locus is part of a conserved linkage group on the mammalian X chromosome.  相似文献   

18.
E. M. Rinchik  R. R. Tonjes  D. Paul    M. D. Potter 《Genetics》1993,135(4):1107-1116
Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations.  相似文献   

19.
H M Chin  C A Kozak  H L Kim  B Mock  O W McBride 《Genomics》1991,11(4):914-919
A rat brain cDNA probe was used to localize a gene encoding the alpha 1 subunit of neuronal dihydropyridine-sensitive L-type calcium channels in the mouse and human genomes. Hybridization of the probe to Southern blots made with DNAs from a Chinese hamster x mouse somatic cell hybrid panel indicated that this gene maps to mouse chromosome 14 (Chr 14). Southern blot analysis of an intersubspecies cross demonstrated that the calcium channel alpha 1 subunit gene, termed Cchl1a2, can be positioned 7.5 cM proximal to Np-1. Similarly, segregation among human X rodent somatic cell hybrids indicated that CCHL1A2 maps to human chromosome 3. These assignments are consistent with a region of linkage homology between human chromosome 3p and a proximal region of mouse Chr 14.  相似文献   

20.
Analysis of homologous recombination in eukaryotes has shown that some meiotic crossing-over occurs preferentially at specific genomic sites of limited physical distance called recombinational hotspots. In the mouse, recombinational hotspots have only been defined in the major histocompatibility complex (MHC) on chromosome (Chr) 17. In an attempt to examine whether hotspots are unique to the MHC or are present throughout the genome, high-resolution linkage maps of Chr 17 based on five backcrosses involving different inbred strains have been generated. These maps separate many markers that were previously shown at the same map position and allow a detailed analysis of recombination patterns across Chr 17. Corresponding recombination intervals in these maps have been compared for the identification of intervals with very little or no recombination in certain genetic crosses and considerable recombination in other genetic crosses. This approach has been termed Recombination Interval Analysis. Possible haplotype-dependent non-MHC hotspots, as well as previously identified MHC hotspots, have been detected by interval analysis. Received: 1 December 1997/ Accepted: 27 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号