首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In this study, we carried out a detailed structural and functional analysis of a Streptococcus agalactiae (GBS) two-component system which is orthologous to the CovS/CovR (CsrS/CsrR) regulatory system of Streptococcus pyogenes. In GBS, covR and covS are part of a seven gene operon transcribed from two promoters that are not regulated by CovR. A DeltacovSR mutant was found to display dramatic phenotypic changes such as increased haemolytic activity and reduced CAMP activity on blood agar. Adherence of the DeltacovSR mutant to epithelial cells was greatly increased and analysis by transmission electron microscopy revealed the presence at its surface of a fibrous extracellular matrix that might be involved in these intercellular interactions. However, the DeltacovSR mutant was unable to initiate growth in RPMI and its viability in human normal serum was greatly impaired. A major finding of this phenotypic analysis was that the CovS/CovR system is important for GBS virulence, as a 3 log increase of the LD(50) of the mutant strain was observed in the neonate rat sepsis model. The pleiotropic phenotype of the DeltacovSR mutant is in full agreement with the large number of genes controlled by CovS/CovR as seen by expression profiling analysis, many of which encode potentially secreted or cell surface-associated proteins: 76 genes are repressed whereas 63 were positively regulated. CovR was shown to bind directly to the regulatory regions of several of these genes and a consensus CovR recognition sequence was proposed using both DNase I footprinting and computational analyses.  相似文献   

7.
8.
9.
10.
11.
The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host. The production of many of these virulence factors is directly controlled by the activity of the CovR/S two-component regulatory system. CovS acts in one direction as a kinase primarily to activate the response regulator CovR and repress the expression of major virulence factors and in the other direction as a phosphatase to permit gene expression in response to environmental changes that mimic conditions found during human infection. This Janus-like behaviour of the CovR/S system is recapitulated in the binding of CovR to the promoters that it directly regulates. Interactions between different faces of the CovR DNA binding domain appear to depend upon DNA sequence, leading to the potential for differential regulation of virulence gene expression.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号