首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

2.
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.  相似文献   

3.
4.
The replication of pT181 and related plasmids of Staphylococcus aureus proceeds by a rolling circle mechanisms. The initiator proteins encoded by the plasmids of the pT181 family have sequence-specific DNA binding and topoisomerase activities. These proteins nick one strand of the DNA at the origin of replication. The free 3'-hydroxyl end at the nick is then used as a primer for the replication of the leading strand of the DNA. Although these initiator proteins are highly homologous, they show specificity in DNA binding and replication for their cognate DNAs. In this study, we have generated hybrid initiator proteins and studied their various biochemical activities in vitro. Our results show that 6 amino acids are sufficient to determine the DNA binding and replication specificities of such initiator proteins.  相似文献   

5.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

6.
pT181 and related plasmids of gram-positive bacteria replicate by a rolling-circle mechanism. The replication initiator protein of pT181, RepC, has origin-specific nicking-closing activities. Replication of the plasmid pT181 leading strand initiates by covalent extension of the RepC-generated nick, and the origin of replication contains signals for both initiation and termination of DNA replication. We have investigated the sequence requirements for the initiation and termination steps by using plasmids containing two pT181 origins. In vitro replication experiments showed that 18- and 24-bp synthetic oligonucleotides containing the RepC nick site were active in the termination of replication. However, initiation of replication required a larger region which also includes the RepC binding site. Plasmids containing the 18- and 24-bp region were also found to be nicked by the RepC protein. Our results demonstrate that sequence requirements for initiation and termination of pT181 replication overlap, but while the RepC binding site is required for initiation, it is dispensable for termination.  相似文献   

7.
Plasmids of the pT181 family encode initiator proteins that act as dimers during plasmid rolling circle (RC) replication. These initiator proteins bind to the origin of replication through a sequence-specific interaction and generate a nick at the origin that acts as the primer for RC replication. Previous studies have demonstrated that the initiator proteins contain separate DNA binding and nicking-closing domains, both of which are required for plasmid replication. The tyrosine residue at position 191 of the initiator RepC protein of pT181 is known to be involved in nicking at the origin. We have generated heterodimers of RepC that consist of different combinations of wild type, DNA binding, and nicking mutant monomers to identify the role of each of the two monomers in RC replication. One monomer with DNA binding activity was sufficient for the targeting of the initiator to the origin, and the presence of Tyr-191 in one monomer was sufficient for the initiation of replication. On the other hand, a dimer consisting of one monomer defective in DNA binding and the other defective in origin nicking failed to initiate replication. Our results demonstrate that the monomer that promotes sequence-specific binding to the origin must also nick the DNA to initiate replication. Interestingly, whereas Tyr-191 of the initiator was required for nicking at the origin to initiate replication, it was dispensable for termination, suggesting that alternate amino acids in the initiator may promote termination but not initiation.  相似文献   

8.
Most small multicopy plasmids of Gram-positive bacteria and many in Gram-negative bacteria replicate by a rolling-circle (RC) mechanism. The replication initiator proteins encoded by the RC plasmids and single-stranded bacteriophages of Escherichia coli have origin-specific nicking-closing activities that are required for the initiation and termination of RC replication. We have investigated the sequence requirements for termination of RC replication of plasmid pT181. The initiator nick site is located in the loop of a hairpin region (IRII) within the pT181 origin of replication. By mutational analysis, we have found that several nucleotides within the stem of IRII which are critical for the initiation activity are dispensable for termination of replication. We also demonstrate that nucleotides in the right arm of IRII, but not the left arm, are absolutely required for termination of RC replication. We have also identified specific nucleotides in IRII that are critical for its termination activity. The sequence of the right arm of the hairpin must be located downstream of the initiator nick site for termination, suggesting that termination requires a specific orientation of the initiator protein at the origin.  相似文献   

9.
The leading strand replication origin of pT181 plasmids consists of two adjacent inverted repeat elements (IR-II and IR-III), which are involved in origin recognition by the initiator (Rep) protein. The conserved core element, IR-II, which contains the initiation nick site, is induced by Rep to form a cruciform structure, probably the primary substrate for the initiation of rolling circle replication. The divergent repeat, IR-III, constitutes the determinant of origin recognition specificity. We show here that the distal arm of IR-III is not required for sequence-specific recognition, whereas the proximal arm and central region are required. Since the initiator is dimeric, we presume that it binds symmetrically to IR-III. A unique type of DNA-protein interaction is proposed, in which the lack of sequence requirement for the distal arm is a consequence of binding to the adjacent IR-II, which thereby polarizes the stringency of binding to the two arms of IR-III. In addition, genetic evidence indicates that both the spacing and the phasing of IR-II to IR-III are crucial for function and that the central segment of IR-III may serve to position the two flanking half-sites for optimal interaction of Rep with IR-III.  相似文献   

10.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

11.
To construct shuttle vectors based on an endogenous replicon, we isolated a small cryptic plasmid (pLP1) from Lactobacillus plantarum CCM 1904. The nucleotide sequence (2093 bp, 38.25 GC mol%) revealed one major open reading frame encoding for a 317 amino acid protein (Rep). Comparisons with proteins encoded by other Gram-positive bacteria plasmids strongly suggest that the protein encoded by pLP1 has a replicative role. The presence of a consensus sequence including a tyrosine residue known to be the replication protein binding site to the DNA (in phage φX174) strengthens this hypothesis. The DNA sequence contains also a sequence similar to the pC194 origin nick sequence, which initiates the plasmid replication at the plus origin, characteristic of plasmids which replicate following a rolling circle mechanism via single-stranded DNA intermediates. A set of 13 direct repeats of 17 bp could be involved in the expression of the incompatibility or in the copy number control as in the other plasmids. A promoter sequence located at the rep 5′ region has been identified and is functional in Bacillus subtilis.  相似文献   

12.
To construct shuttle vectors based on an endogenous replicon, we isolated a small cryptic plasmid (pLP1) from Lactobacillus plantarum CCM 1904. The nucleotide sequence (2093 bp, 38.25 GC mol%) revealed one major open reading frame encoding for a 317 amino acid protein (Rep). Comparisons with proteins encoded by other Gram-positive bacteria plasmids strongly suggest that the protein encoded by pLP1 has a replicative role. The presence of a consensus sequence including a tyrosine residue known to be the replication protein binding site to the DNA (in phage phi X174) strengthens this hypothesis. The DNA sequence contains also a sequence similar to the pC194 origin nick sequence, which initiates the plasmid replication at the plus origin, characteristic of plasmids which replicate following a rolling circle mechanism via single-stranded DNA intermediates. A set of 13 direct repeats of 17 bp could be involved in the expression of the incompatibility or in the copy number control as in the other plasmids. A promoter sequence located at the rep 5' region has been identified and is functional in Bacillus subtilis.  相似文献   

13.
Plasmid rolling-circle replication: highlights of two decades of research   总被引:15,自引:0,他引:15  
Khan SA 《Plasmid》2005,53(2):126-136
This review provides a historical perspective of the major findings that contributed to our current understanding of plasmid rolling-circle (RC) replication. Rolling-circle-replicating (RCR) plasmids were discovered approximately 20 years ago. The first of the RCR plasmids to be identified were native to Gram-positive bacteria, but later such plasmids were also identified in Gram-negative bacteria and in archaea. Further studies revealed mechanistic similarities in the replication of RCR plasmids and the single-stranded DNA bacteriophages of Escherichia coli, although there were important differences as well. Three important elements, a gene encoding the initiator protein, the double strand origin, and the single strand origin, are contained in all RCR plasmids. The initiator proteins typically contain a domain involved in their sequence-specific binding to the double strand origin and a domain that nicks within the double strand origin and generates the primer for DNA replication. The double strand origins include the start-site of leading strand synthesis and contain sequences that are bound and nicked by the initiator proteins. The single strand origins are required for synthesis of the lagging strand of RCR plasmids. The single strand origins are non-coding regions that are strand-specific, and contain extensive secondary structures. This minireview will highlight the major findings in the study of plasmid RC replication over the past twenty years. Regulation of replication of RCR plasmids will not be included since it is the subject of another review.  相似文献   

14.
Several staphylococcal plasmids from different incompatibility (inc) groups which replicate by a rolling circle mechanism each specify a replication initiator protein (Rep) which is homologous with that of the inc3 tetracycline resistance plasmid pT181. The rep gene sequences of six pT181-like plasmids are known, each encoding proteins of molecular mass 38 kDa with 62% overall amino acid sequence identity. The initiation of replication in vivo by each of the Rep proteins is plasmid specific, acting in trans only at the cognate replication origin (ori) of the encoding plasmid. Previous studies in vitro of the RepC protein of pT181 demonstrated replication initiator, topoisomerase-like, and DNA binding activities, which appeared to be specific for the origin (oriC) of pT181 when compared with unrelated staphylococcal plasmids. Although RepD, specified by the inc4 chloramphenicol resistance plasmid pC221, has a range of activities similar to those noted previously for RepC, manipulation of in vitro conditions has revealed discrete steps in the overall reaction of RepD with oriD. In addition, factors have been identified which are necessary not only for sequence-dependent discrimination in vitro by Rep proteins for all pT181-like plasmids but also for the absolute specificity of RepD for its cognate pC221 replication origin (oriD), the latter occurring in vivo and a function of the topological state of the ori-containing target DNA. Here we also demonstrate the presence of a covalent phosphoryl-tyrosine linkage between the RepD protein of plasmid pC221 and an oligonucleotide substrate corresponding to its replication origin (oriD). The reactive tyrosine (Tyr-188) was identified from amino acid sequences of 32P-labeled peptide-oligonucleotide fragments. Substitution of Tyr-188 with phenylalanine confirms the importance of the tyrosyl hydroxyl group since the Y188F protein retains the sequence-specific DNA-binding capabilities of wild-type RepD but is unable to attach covalently to the replication origin or participate in the nicking-closing reaction in vitro.  相似文献   

15.
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.  相似文献   

16.
Rolling circle replication of single-stranded DNA plasmid pC194.   总被引:39,自引:5,他引:34       下载免费PDF全文
M F Gros  H te Riele    S D Ehrlich 《The EMBO journal》1987,6(12):3863-3869
A group of small Staphylococcus aureus/Bacillus subtilis plasmids was recently found to replicate via a circular single-stranded DNA intermediate (te Riele et al., 1986a). We show here that a 55 bp region of one such plasmid, pC194, has origin activity when complemented in trans by the plasmid replication protein. This region contains two palindromes, 5 and 14 bp long, and a site nicked by the replication protein. DNA synthesis presumably initiated at the nick in the replication origin can be terminated at an 18 bp sequence homologous to the site of initiation, deriving from another plasmid, pUB110, or synthesized in vitro. This result suggests that, similar to the Escherichia coli single-stranded DNA phages, pC194 replicates as a rolling circle. Interestingly, there is homology between replication origins and replication proteins of pC194 and the phage phi mX174.  相似文献   

17.
Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step.  相似文献   

18.
19.
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.  相似文献   

20.
To assess which residues of Oct-1 POU-specific (POUs) are important for DNA recognition and stimulation of adenovirus DNA replication we have mutated 10 residues of the POUs helix-turn-helix motif implicated in DNA contact. Seven of these turned out to have reduced DNA binding affinity. Of these, three alanine substituted proteins were found to have a changed specificity using a binding site selection procedure. Mutation of the first residue in the recognition helix, Gln44, to alanine led to a loss of specificity for the first two bases, TA, of the wild-type recognition site TATGC(A/T)AAT. Instead of the A, a T was selected, suggesting a new contact and a novel specificity. A change in specificity was also observed for the T45A mutant, which could bind to TATAC(A/T)AAT, a site hardly recognized by the wild-type protein. Mutation of residue Arg49 led to a relaxed specificity for three consecutive bases, TGC. This residue, which is critical for high affinity binding, is absent from the structurally homologous lambdoid helix-turn-helix motifs. Employing a reconstituted system all but two mutants could stimulate adenovirus DNA replication upon saturation. Mutation of residues Gln27 and Arg49 impairs the ability of the Oct-1 POU domain protein to enhance replication, with a concomitant loss of DNA contacts. Since the POU domain binds the precursor terminal protein-DNA polymerase complex and guides it to the origin, lack of stimulation may be caused by incorrect targetting of the DNA polymerase due to loss of specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号