首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The source-sink relations in grapevine (Vitis vinifera L., var. Rkatsiteli) plants were disturbed by defoliation at different stages of vegetative growth in order to investigate changes in photosynthetic activity and assimilate partitioning. Defoliation was shown to stimulate photosynthesis in the remaining source leaves, enhance the assimilate export, and diminish the midday suppression of photosynthesis. Defoliation created a powerful sink for assimilates, and stimulated their delivery to the affected zone. It is hypothesized that defoliation-induced stress is accompanied by a substantial enhancement of photosynthetic activity and by redistribution of assimilate flows, which enables a sustained supply of assimilates to the sink organs of grapevine plants.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 507–512.Original Russian Text Copyright © 2005 by Chanishvili, Badridze, Barblishvili, Dolidze.  相似文献   

2.
The distribution of carbon (C) into whole grapevine fruiting cuttings was investigated during flower development to determine the relative contribution of inflorescence and leaf photoassimilates in the total C balance and to investigate their partitioning towards other plant organs. A (13)C labelling procedure was used to label C photoassimilates by leaves and inflorescences in grapevine. Investigations were carried out at various stages of flower/berry development, from separated cluster to fruit set, using grapevine fruiting cuttings with four leaves (Vitis vinifera L. cv. Chardonnay). This is the first study reporting that, during its development, (i) the carbon needs of the inflorescence were met by both leaf and inflorescence photosynthesis, and (ii) the inflorescence amazingly participated significantly to the total C balance of grapevine cuttings by redistributing an important part of its own assimilates to other plant organs. With regard to flowering, 29% of C assimilated by the inflorescence remained in the inflorescence, while partitioning towards the stem reached 42% and, as a lower proportion, 15% in leaves, and 14% in roots.  相似文献   

3.
Needles of 20-year-old Scots pine trees (Pinus silvestris L.) were permitted to photoassimilate 14CO2 for 1 h on different dates during the growing season. The loss of radioactivity from current, 1-year-old, and 2-year-old needles was followed, and the translocation of photoassimilated 14CO2 from older needle age-classes to the elongating new needles studied. The effects of good mineral and water supply on translocation were also considered. In the spring, 1-year-old and 2-year-old needles accumulated 14C. These reserves, together with current photosynthate, were utilized when the trees started growing. The 1-year-old needles exported 14C to the current needles during the first weeks of elongation of the later, while no such translocation occurred from the 2-year-old needles. Removal of the 1-year-old needles resulted in translocation of assimilates from the 2-year-old needles to the current needles. The general pattern of translocation observed in the control trees was not changed when the trees were fertilized and irrigated. The new needles started to export assimilates in the middle of July when the photosynthetic rate per needle was comparable with that of the older age-classes. This occurred about 4 weeks after positive net photosynthesis was first measured for the current shoot. The current needles of trees with good nutrient and water supply seemed to become self-sufficient in photoassimilates earlier than the current needles of the control trees.  相似文献   

4.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

5.
The role of abscisic acid (ABA) in the regulation of transport of assimilates to seeds was investigated with the aid of Arabidopsis thaliana mutants that were ABA-deficient and/or insensitive to ABA. Subsequent flowers of mutant mother plants were alternately pollinated with pollen from either wild-type or mutant plants, and the transport of radiolabelled photoassimilates to the genetically different seeds was studied. The experiments were performed under conditions of reduced availability of source material, achieved either by reduced light quantity or by combining the ABA-deficient mutant with a starchless mutant. No effect of the genotype on the import rate of assimilates was detected, indicating that endogenous ABA does not influence the sink strength of Arabidopsis seeds. Reports describing contrary results are discussed.  相似文献   

6.
Pod set in soybean is related to carbon partitioning and may be, at least partially, regulated by abscisic acid (ABA) concentrations. The studies reported here examine the relationship between carbon and ABA partitioning, reproductive abscission and ABA metabolism. The partitioning of radiolabeled ABA and photoassimilates from leaves to flowers and endogenous ABA concentrations were determined in shaded and unshaded reproductive structures. Aluminum foil was gently placed over individual soybean reproductive structures for 48 hours at 0, 4, 12, 17, and 22 days after anthesis (DAA). Shading of flowers at 12, 17, and 22 DAA resulted in significantly reduced concentration of ABA. However, shading had no effect on the catabolism of exogenously supplied [3H] ABA. The shading treatment on the first four of the five dates reduced partitioning of photoassimilates and ABA from the subtending leaf to the flower. Shading of reproductive structures also caused a significant reduction in the amount of assimilate exported from the subtending leaf, at 17 DAA. We conclude that shade-induced premature reproductive abscission in soybean is not stimulated by high levels of ABA within reproductive structures, but that ABA may inhibit abscission of reproductive structures by playing a role in preferential assimilate partitioning.  相似文献   

7.
Abstract

A field experiment was conducted to quantify the effect of varied water regimes on root length, partitioning of dry matter and plant growth regulators by using sunflower genotypes differing in maturity and drought tolerance. Significant depressing effect of drought stress was evident on traits (i.e., reproductive dry matter, leaf area index and cytokinin concentrations in leaves). However, root/shoot, reproductive/vegetative ratios and Abscisic acid (ABA) concentration were found to increase under drought stress. Drought stress also changed the dry matter accumulation pattern of genotypes. In most cases it reduced the days to reach the maximum peak showing early senescence.

ABA was identified as a multi-functional plant growth regulator under drought stress, causing early senescence of plants and translocation of assimilates to the roots and reproductive part while root growth under drought stress was explained by the indole-acetic acid (IAA) concentrations. Maintaining higher cytokinin contents were involved in accumulation of higher reproductive dry matter under drought stress. Although ABA and IAA were both involved in the development of defense responses during the adaptation and survival to drought stress but higher productivity under drought stress was only realized through maintaining higher cytokinin contents.  相似文献   

8.
Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot‐grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre‐veraison, full veraison and post‐veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA‐treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build‐up of non‐structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.  相似文献   

9.
10.
Metabolism and distribution of xylem-fed ABA were investigated in leaves of maize (Zea mays) and Commelina communis when water stress and xylem pH manipulation were applied. 3H-ABA was fed to excised leaves via the transpiration stream. Water stress was applied through either a previous soil-drying before leaves were excised, or a quick dehydration after leaves were fed with ABA. Xylem-delivered ABA was metabolised rapidly in the leaves (half-life 0.7 h and 1.02 h for maize and Commelina respectively), but a previous soil-drying or a post-feeding dehydration significantly extended the half-life of fed ABA in both species. In the first few hours after ABA was fed into the detached leaves, percentages of applied ABA remaining unmodified were always higher in leaves which received water stress treatments than in control leaves. However the percentage decreased to below the control levels several hours later in leaves which received a previous soil-drying treatment prior to excision, but had then been rehydrated by the xylem-feeding process itself. One possible explanation for this could be a changed pattern of compartmentalisation for xylem-carried ABA. A post-feeding dehydration treatment also changed the distribution of xylem-fed ABA within the leaves: more ABA was found in the epidermis of Commelina leaves which had been dehydrated rapidly after ABA had been fed, compared to the controls. The levels of xylem-delivered ABA remaining unmodified increased as the pH of the feeding solution increased from 5 to 8. The results support the hypothesis that water stress and a putative stress-induced xylem pH change may modify stomatal sensitivity to ABA by changing the actual ABA content of the leaf epidermis.  相似文献   

11.
Leaves are an important contributor toward berry sugar and nitrogen (N) accumulation, and leaf area, therefore, affects fruit composition during grapevine (Vitis vinifera) berry ripening. The aim of this study was to investigate the impact of leaf presence on key berry quality attributes in conjunction with the accumulation of primary berry metabolites. Shortly after the start of véraison (berry ripening), potted grapevines were defoliated (total defoliation and 25% of the control), and the accumulation of berry soluble solids, N and anthocyanins were compared to that of a full leaf area control. An untargeted approach was undertaken to measure the content in primary metabolites by gas chromatography/mass spectrometry. Partial and full defoliation resulted in reduced berry sugar and anthocyanin accumulation, while total berry N content was unaffected. The juice yeast assimilable N (YAN), however, increased upon partial and full defoliation. Remobilized carbohydrate reserves allowed accumulation of the major berry sugars during the absence of leaf photoassimilation. Berry anthocyanin biosynthesis was strongly inhibited by defoliation, which could relate to the carbon (C) source limitation and/or increased bunch exposure. Arginine accumulation, likely resulting from reserve translocation, contributed to increased YAN upon defoliation. Furthermore, assessing the implications on various products of the shikimate pathway suggests the C flux through this pathway to be largely affected by leaf source limitation during fruit maturation. This study provides a novel investigation of impacts of leaf C and N source presence during berry maturation, on the development of key berry quality parameters as underlined by alterations in primary metabolism.  相似文献   

12.
In cuttings of Chara vulgaris consisting of 3–4 internodal cells with whorls (branchlets) transport of photoassimilates was investigated by 14C-labelling. The distribution of radioactivity in different component parts of the plant was shown as percentage and calculated in relation to fresh weight. Sucrose was identified as the main transported carbohydrate. In fertile Ch. vulgaris plants, developing oogonia and antheridia were important sinks for transported carbohydrates. Polarity of transport in the internodal cells (nutrients and assimilates) remains constant, as the main characteristic, from base to apex in fertile as well as in sterile plants. In sterile plants, the branchlets being the main source for photoassimilates and the apex the sink, transport from branchlets is mainly in the direction of the internodes. In the case of fertile plants gametangia are additional sinks redirecting transport of assimilates into the branchlets.  相似文献   

13.
We tested the possible cytokinin effect on the functioning of the active transport system involved in the assimilate loading into the phloem as a cause for the cytokinin sink and retention effect. This effect is manifested in the deceleration of substance export from and the stimulation of substance import to the sites of local phytohormone application to the mature detached leaf from untreated leaf areas. To affect the membrane mechanisms of the substance transport, we used leaf treatment with the phytotoxin fusicoccin, an enhancer of plasmalemmal H+-ATPase and a potential stimulator of assimilates export, and with the phytohormone ABA affecting transport, metabolism, and plant growth. However, fusicoccin did not enhance 14C-sucrose export from the leaf blade and did not interfere with the cytokinin-induced export deceleration. ABA reduced substantially 14C export from the leaf but eliminated the cytokinin effect on this process. Similar results were obtained for broad bean (Vicia faba L.) leaves with apoplastic phloem loading, involving H+-ATPase activity, and pumpkin (Cucurbita pepo L.) leaves with symplastic phloem loading, that is, occurring without sucrose transmembrane translocation and without H+-ATPase involvement. The conclusion is that the cytokinin-induced development of sink zones in source leaves is not related to the membrane mechanisms of the substance transport in the mesophyll–phloem system. The data obtained support the idea that the cause for the cytokinin sink and retention effect is the enhancement of elongation growth and total activation of metabolism in the mesophyll cells of the detached leaf.  相似文献   

14.
A technique for reliable labeling of the carbon reserves of the trunk and roots without labeling the current year's growth of grapevines was developed in order to study retranslocation of carbon from the perennial storage tissues into the fruit in response to defoliation stress during the ripening period. A special training system with two shoots was used: the lower one (feeding shoot) was cut back and defoliated to one single leaf (14CO2-feeding leaf) while the other (main shoot) was topped to 12 leaves. The potted plants were placed in a water bath at 30 °C to increase root temperature and therefore their sink activity. Additionally, a cold barrier (2–4 °C) was installed at the base of the main shoot to inhibit acropetal 14C translocation. Using this method, we were able to direct labeled assimilates to trunk and roots in preference to the current year's growth. On vines with root and shoot at ambient temperature, 44% of the 14C activity was found in the main shoot 16 h after feeding whereas only 2% was found in the temperature-treated vines. At the onset of fruit ripening, and at three-week intervals thereafter until harvest, potted grapevines were fed with 14CO2 using the temperature treatment described above. Sixteen hours after feeding, half of the vines of each group were defoliated by removing all except the two uppermost main leaves. Three weeks after each treatment, vines were destructively harvested and the dry weight and 14C incorporation determined for all plant parts. Under non-stressing conditions, there was no retranslocation of carbon reserves to support fruit maturation. Vines responded to defoliation stress by altering the natural translocation pattern and directing carbon stored in the lower parts to the fruit. In the three weeks following veraison (the inception of ripening in the grape berry), 12% of the labeled carbon reserves was translocated to the fruit of defoliated plants compared to 1.6% found in the clusters of control vines. Retranslocation from trunk and roots was highest during the middle of the ripening period, when 32% of the labeled carbon was found in the fruit compared to 0.7% in control plants. Defoliation during this period also caused major changes in dry-matter partitioning: the fruit represented 31% of total plant biomass compared to 21% measured in the control vines. Root growth was reduced by defoliation at veraison and during the ripening period. Defoliation three weeks before harvest did not affect dry matter or 14C partitioning.  相似文献   

15.
为探究甘蔗(Soccharum officinarum)内源激素与其脱叶性之间的相关性,对不同成熟期甘蔗不同叶位的叶鞘基部的脱落酸(ABA)、脱落酸葡萄糖酯(ABA-GE)、1-氨基环丙烷羧酸(ACC)和茉莉酸(JA)及相关衍生物茉莉酸-缬氨酸(JA-val)的含量进行测定。结果表明,LZ02-169品系的ABA、JA-val含量随成熟期的变化趋势与脱叶率一致;而LZ02-169的+8叶叶鞘基部ACC含量的变化趋势与脱叶率相反;成熟后期LZ02-169的+8叶叶鞘基部ABA、ABA-GE及JA-val的含量均显著高于‘GT47’。因此,甘蔗成熟后期ABA含量的升高可能加速了叶片的脱落;经由ACC转化的乙烯和JA-Val也对叶片的脱落具有促进作用。  相似文献   

16.
Defoliation reduced the dry weight of stems, pods, grains and size of individual grains in all four of the legume crops studied and the dry weight of flowering inflorescence stalk in the case of cowpeas and green gram only. The adverse effect of defoliation was more pronounced when defoliation was complete than when half of the number of leaves were removed. The greatest reduction in grain yield occurred when the plants were defoliated during the early podding stage, the percentage reduction being 59.7, 79.0, 86.4 and 95.3 in groundnut, cowpeas, soyabeans and green gram respectively when completely defoliated at this stage and 43.3, 14.0, 42.4 and 46.1 respectively when only half defoliated. The results show that assimilates produced by the leaves during the early stages of growth are used in the growth of stems and leaves, but the assimilates produced during the reproductive stage are used mainly for the growth of the pods. In groundnut, pod number and grain weight were positively correlated with stem weight. It appears that defoliation reduced pod number by depressing the growth of stems and this in turn reduced the number of flowering nodes. The reasons for the differences between the crops in their response to the defoliation treatments and the practical implications of the findings in relation to pest and disease control and plucking of leaves for human consumption are discussed.  相似文献   

17.
The impact of defoliation by fall armyworm, Spodoptera frugiperda (J. E. Smith), on the photosynthetic rates of injured, individual wheat, Triticum aestivum L., leaves and the impact of different spatial patterns of artificial insect defoliation on photosynthesis of remaining leaf tissue of injured, individual wheat leaves were evaluated in this study. Photosynthesis, stomatal conductance, transpiration, and chlorophyll a fluorescence were recorded in the flag-leaves of wheat plants 1 and 24 h after defoliation in 2003 and at 1 h, 24 h, 7 d, and 14 d after defoliation in 2004. Photosynthesis of injured leaves was not significantly affected by any defoliation treatment (i.e., control, natural, and artificial). Similarly, we did not observe interactions between defoliation treatments and time after defoliation. Stomatal conductance was significantly affected by time after defoliation and by the interaction between defoliation treatment and time after defoliation. However, in general, our results showed that wheat responded similarly to insect defoliation and artificial defoliation, which, therefore, may be used to simulate leaf mass consumption. Spatial defoliation patterns had a significant effect on photosynthetic parameters of injured leaves, but responses were dependent on plant developmental stages. The chlorophyll a fluorescence data revealed no significant effects from any defoliation pattern on the photochemical efficiency of the injured leaf. No significant interactions between defoliation patterns and time after defoliation were observed. Our findings reveal that the spatial pattern of defoliation in wheat affects photosynthetic and other gas exchange responses, which suggests that when simulating insect defoliation in wheat, researchers need to be cognizant of the defoliation pattern to adequately simulate insect defoliation.  相似文献   

18.
Sugars are key constituents that affect quality of grape berries, and consequently the grape metabolic profile relevant to wine’s industry. However, enzymes and transporter genes expression involved in sugar transport at different phenological stages are scarcely studied. In addition, little is known about the role of the plant hormones ABA and Gibberellin (GA3) as endogenous regulators, over the expression pattern of the sugars transporters genes in grapevine. The aim of this study was to analyze the expression pattern of the most relevant sugar transporters and invertases in leaves and berries of grapevine plants cv. Malbec during berry ripening stages and its shift after ABA and GA3 sprays. In leaves, VvHT1 was the sugar transporter highly expressed, whereas VvHT6 was the most abundant in berries throughout berry ripening. Moreover, VvSUC12 and VvSUC27 were expressed at veraison greater in leaves than in berries, suggesting an active phloem loading at the onset of ripening. Applications of ABA and GA3 enhanced the expression of VvSUC12 and VvSUC27 in pre-veraison leaves. Furthermore, hormones increased the expression of VvHT2, VvHT3 and VvHT6 in berries at different stages of ripening favoring sugar unloading from phloem. In conclusion, ABA and GA3 are involved in the long-distance sugar transport from leaves to berries in Vitis vinifera L. cv. Malbec, and their exogenous application could be a suitable strategy to improve the process.  相似文献   

19.
To know to what extent reproductive shoots are autonomous in Camellia sasanqua, we manipulated the sink-source balance between the reproductive shoots and their adjacent shoots by selecting vegetative or reproductive adjacent shoots, or defoliating the reproductive shoots, and photosynthetically labeled adjacent shoots with 13C. The atom% of 13C did not increase in the unlabeled shoots that had leaves, whereas that in the defoliated, unlabeled shoot was significantly increased. These results indicated that the pattern of translocation of photoassimilates to adjacent reproductive shoots occurs depending on the sink-source balance between shoots.  相似文献   

20.
Effect of abscisic acid on cell permeability in leaves ofIresine u allisi hort. and roots ofBeta vulgaris L. were examined. An increase of betacyanin leakage from leaf cells was shown by ABA at 10−4, 10−7 or 10−9 M concentrations in water solution at 25 °C. The efflux of batacyanin from tissues did not change during the joint action of ABA and PEG 1000. ABA could lower the betacyanin leakage fromIresine leaves and beet-root slices under severe osmotic stress, as was found by deplasmolysis. The results suggest that ABA elicits some alteration in density of tonoplast membranes under dehydration. Presented at the International Symposium “Plant Growth Regulators” held on June 18–22, 1984 at Liblice, Czechoslovakia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号