首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.  相似文献   

2.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

3.
The role of phytochrome B2 (phyB2) in the control of photomorphogenesis in tomato (Solanum lycopersicum L.) has been investigated using recently isolated mutants carrying lesions in the PHYB2 gene. The physiological interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phyB2 have also been explored, using an isogenic series of all possible mutant combinations and several different phenotypic characteristics. The loss of phyB2 had a negligible effect on the development of white-light-grown wild-type or phyA-deficient plants, but substantially enhanced the elongated pale phenotype of the phyB1 mutant. This redundancy was also seen in the control of de-etiolation under continuous red light (R), where the loss of phyB2 had no detectable effect in the presence of phyB1. Under continuous R, phyA action was largely independent of phyB1 and phyB2 in terms of the control of hypocotyl elongation, but antagonized the effects of phyB1 in the control of anthocyanin synthesis, indicating that photoreceptors may interact differently to control different traits. Irradiance response curves for anthocyanin synthesis revealed that phyB1 and phyB2 together mediate all the detectable response to high-irradiance R, and, surprisingly, that the phyA-dependent low-irradiance component is also strongly reduced in the phyB1 phyB2 double mutant. This is not associated with a reduction in phyA protein content or responsiveness to continuous far-red light (FR), suggesting that phyB1 and phyB2 specifically influence phyA activity under low-irradiance R. Finally, the phyA phyB1 phyB2 triple mutant showed strong residual responsiveness to supplementary daytime FR, indicating that at least one of the two remaining phytochromes plays a significant role in tomato photomorphogenesis.  相似文献   

4.
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.  相似文献   

5.
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.  相似文献   

6.
In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif–containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.  相似文献   

7.
The roles of different phytochromes have been investigated in the photoinduction of several chlorophyll a/b-binding protein genes (CAB) of Arabidopsis thaliana. Etiolated seedlings of the wild type, a phytochrome A (PhyA) null mutant (phyA), a phytochrome B (PhyB) null mutant (phyB), and phyA/phyB double mutant were exposed to monochromatic light to address the questions of the fluence and wavelength requirements for CAB induction by different phytochromes. In the wild type and the phyB mutant, PhyA photoirreversibly induced CAB expression upon irradiation with very-low-fluence light of 350 to 750 nm. In contrast, using the phyA mutant, PhyB photoreversibly induced CAB expression with low-fluence red light. The threshold fluences of red light for PhyA- and PhyB-specific induction were about 10 nmol m-2 and 10 mumol m-2, respectively. In addition, CAB expression was photoreversibly induced with low-fluence red light in the phyA/phyB double mutant, revealing that another phytochrome(s) (PhyX) regulated CAB expression in a manner similar to PhyB. These data suggest that plants utilize different phytochromes to perceive light of varying wave-lengths and fluence, and begin to explain how plants respond so exquisitely to changing light in their environment.  相似文献   

8.
Blue-light responses in higher plants are mediated by specific photoreceptors, which are thought to be flavoproteins; one such flavin-type blue-light receptor, CRY1 (for cryptochrome), which mediates inhibition of hypocotyl elongation and anthocyanin biosynthesis, has recently been characterized. Prompted by classical photobiological studies suggesting possible co-action of the red/far-red absorbing photoreceptor phytochrome with blue-light photoreceptors in certain plant species, the role of phytochrome in CRY1 action in Arabidopsis was investigated. The activity of the CRY1 photoreceptor can be substantially altered by manipulating the levels of active phytochrome (Pfr) with red or far-red light pulses subsequent to blue-light treatments. Furthermore, analysis of severely phytochrome-deficient mutants showed that CRY1-mediated blue-light responses were considerably reduced, even though Western blots confirmed that levels of CRY1 photoreceptor are unaffected in these phytochrome-deficient mutant backgrounds. It was concluded that CRY1-mediated inhibition of hypocotyl elongation and anthocyanin production requires active phytochrome for full expression, and that this requirement can be supplied by low levels of either phyA or phyB.  相似文献   

9.
10.
Tobacco phytochromes: genes, structure and expression   总被引:2,自引:0,他引:2  
  相似文献   

11.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

12.
13.
Devlin PF  Kay SA 《The Plant cell》2000,12(12):2499-2509
The circadian clock is entrained to the daily cycle of day and night by light signals at dawn and dusk. Plants make use of both the phytochrome (phy) and cryptochrome (cry) families of photoreceptors in gathering information about the light environment for setting the clock. We demonstrate that the phytochromes phyA, phyB, phyD, and phyE act as photoreceptors in red light input to the clock and that phyA and the cryptochromes cry1 and cry2 act as photoreceptors in blue light input. phyA and phyB act additively in red light input to the clock, whereas cry1 and cry2 act redundantly in blue light input. In addition to the action of cry1 as a photoreceptor that mediates blue light input into the clock, we demonstrate a requirement of cry1 for phyA signaling to the clock in both red and blue light. Importantly, Arabidopsis cry1 cry2 double mutants still show robust rhythmicity, indicating that cryptochromes do not form a part of the central circadian oscillator in plants as they do in mammals.  相似文献   

14.
J J Casal 《Plant physiology》1996,112(3):965-973
We sought to determine if phytochrome B (phyB)-mediated responses to the red light (R)/far-red light (FR) ratio are affected by phytochrome A (phyA) activity in light-grown seedlings of Arabidopsis thaliana. Pulses of FR delayed into the dark period were less effective than end-of-day (EOD) FR in promoting hypocotyl growth over a given period in darkness. White light minus blue light interposed instead of darkness between the end of the white-light photoperiod and the FR pulse was sufficient to maintain responsivity to the decrease in phyB in FR-light-absorbing form in wild-type (WT) seedlings, but not in the phyA mutant. Compared with EOD R, hourly R+FR pulses provided throughout the night caused a stronger promotion of stem growth than a single EOD R+FR pulse in WT Arabidopsis, cucumber, mustard, sunflower, tobacco, and tomato, but not in phyA Arabidopsis or in the aurea mutant of tomato. WT seedlings of Arabidopsis responded to a range of high EOD R/FR ratios, whereas the phyA mutant required stronger reductions in the EOD R/FR ratio. In sunlight, phyA seedlings of Arabidopsis showed no response to the "early warning" signals of neighboring vegetation, and hypocotyl-growth promotion occurred at higher plant densities than in the WT. Thus, under a series of light conditions, the sensitivity or responsivity to reductions in the R/FR ratio were larger in WT than in phyA seedlings. A product of phyA is therefore proposed to enhance the hypocotyl-growth response to decreases in phyB in FR-light-absorbing form in light grown seedlings.  相似文献   

15.
16.
Nuclear localization activity of phytochrome B   总被引:31,自引:8,他引:23  
Phytochromes are soluble red/far-red-light photoreceptor proteins which mediate various photomorphogenic responses of plants. Despite much effort, the signal transduction mechanism of phytochrome has remained obscure. Phytochromes are encoded by a small multigene family in Arabidopsis . Among the members of the family, phytochrome A (phyA) and B (phyB) are the best characterized. PhyB contains putative nuclear localization signals within its C-terminal region. Transgenic Arabidopsis plants were produced which expressed a fusion protein consisting of GUS and C-terminal fragments of phyB. GUS staining from the fusion protein in these transgenic plants was observed in the nucleus, which suggests that the nuclear localization signal of the fragment is functional. Next, it was examined whether the endogenous phyB was detected in the nucleus. Nuclei were isolated from the light-grown wild-type Arabidopsis leaves and subjected to the immunoblot analysis. The result indicated that a substantial fraction of total phyB was recovered in the isolated nuclei. This result was further confirmed by the immunocytochemical analysis of the protoplasts. Finally, the effects of light treatments on the levels of phyB in the isolated nuclei were examined. Dark adaptation of the plants before the nuclear isolation reduced the levels of phyB. The reduction was accelerated by irradiation of plants with far-red light before the transfer to darkness. Thus, nuclear localization of phyB was suggested to be light-dependent.  相似文献   

17.
To study negative interactions between phytochromes, phytochrome B (phyB) overexpressor lines, the mutants phyA-201, phyB-4, phyB-5, phyD-1, phyA-201 phyB-5, phyA-201 phyD-1, and phyB-5 phyD-1 of Arabidopsis were used. Endogenous phyB, but not phytochrome D (phyD), partly suppressed phytochrome A (phyA)-dependent inhibition of hypocotyl elongation in far-red light (FR). Dichromatic irradiation demonstrated that the negative effect of phyB was largely independent of the photoequilibrium, i.e. far-red light absorbing form of phytochrome formation. Moreover, phyB-4, a mutant impaired in signal transduction, did not show a loss of inhibition of phyA by phyB. Overexpression of phyB, conversely, resulted in an enhanced inhibition of phyA function, even in the absence of supplementary carbohydrates. However, overexpression of a mutated phyB, which cannot incorporate the chromophore, had no detectable effect on phyA action. In addition to seedling growth, accumulation of anthocyanins in FR, another manifestation of the high irradiance response, was strongly influenced by phyB holoprotein. Induction of seed germination by FR, a very low fluence response, was suppressed by both endogenous phyB and phyD. In conclusion, we show that both classical response modes of phyA, high irradiance response, and very low fluence response are subject to an inhibitory action of phyB-like phytochromes. Possible mechanisms of the negative interference are discussed.  相似文献   

18.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

19.
Huq E  Quail PH 《The EMBO journal》2002,21(10):2441-2450
Plants sense and respond to red and far-red light using the phytochrome (phy) family of photoreceptors. However, the mechanism of light signal transduction is not well defined. Here, we report the identification of a new mutant Arabidopsis locus, srl2 (short under red-light 2), which confers selective hypersensitivity to continuous red, but not far-red, light. This hypersensitivity is eliminated in srl2phyB, but not srl2phyA, double mutants, indicating that this locus functions selectively and negatively in phyB signaling. The SRL2 gene encodes a bHLH factor, designated PIF4 (phytochrome-interacting factor 4), which binds selectively to the biologically active Pfr form of phyB, but has little affinity for phyA. Despite its hypersensitive morphological phenotype, the srl2 mutant displays no perturbation of light-induced expression of marker genes for chloroplast development. These data suggest that PIF4 may function specifically in a branch of the phyB signaling network that regulates a subset of genes involved in cell expansion. Consistent with this proposal, PIF4 localizes to the nucleus and can bind to a G-box DNA sequence motif found in various light-regulated promoters.  相似文献   

20.
Mutations in a component of phytochrome A (phyA)-specific light signal transduction, SPA1, result in enhanced responsiveness of Arabidopsis seedlings to red and far-red light. Here, we have examined the effects of spa1 mutations on the two known modes of phyA function, the high-irradiance responses (HIRs) to continuous irradiation with far-red light and the very-low-fluence responses (VLFRs) to inductive pulses of light that establish only a small proportion of active phyA. spa1 mutants exhibited an enhanced VLFR under hourly pulses of far-red light for hypocotyl growth inhibition, cotyledon unfolding, anthocyanin accumulation, block of greening in subsequent white light and negative regulation of phyB signaling. We provide evidence that the phenotype of spa1 mutants in red light is also caused by an increase in the VLFR. Taken together, our results indicate that light-induced hypocotyl growth inhibition in spa1 mutants is primarily due to a VLFR. While wild-type seedlings required hourly pulses of far-red light to induce a VLFR, infrequent irradiation with far-red pulses (every 12 h) was sufficient to induce a strong VLFR of hypocotyl elongation in spa1 mutants. This shows that the effect of the VLFR was more persistent in spa1 mutants than in the wild type. We, therefore, propose that SPA1 has an important function in reducing the persistence of phyA signaling. spa1 mutations also enhanced the HIRs of anthocyanin accumulation and of phyA-mediated responsivity amplification towards phyB. Thus, our results suggest that spa1 mutations amplify both the phyA-mediated VLFR and the HIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号