首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reversible oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTPs) has emerged as a putative mechanism of activity regulation by physiological cell stimulation with growth factors, and by cell treatments with adverse agents such as UV irradiation. We compared SHP-1 and SHP-2, two structurally related cytoplasmic protein-tyrosine phosphatases with different cellular functions and cell-specific expression patterns, for their intrinsic susceptibility to oxidation by H(2)O(2). The extent of oxidation was monitored by detecting the modification of the PTP catalytic cysteine by three different methods, including a modified in-gel PTP assay, alkylation with a biotinylated iodoacetic acid derivative, and an antibody against oxidized PTPs. Dose-response curves for oxidation of the catalytic domains of SHP-1 and SHP-2 were similar. SHP-1 and -2 require relatively high H(2)O(2) concentrations for oxidation (half-maximal oxidation at 0.1-0.5 mM). For SHP-1, the SH2 domains had a significant protective function with respect to oxidation. In EOL-1 cells, SHP oxidation by exogenous H(2)O(2) in general and SHP-2 oxidation in particular was strongly diminished compared to HEK293 cells, at least partially related to a generally lower oxidant sensitivity of the EOL-1 cells. The data suggest that the differential cell functions of SHP-1 and SHP-2 are not related to differences in oxidation sensitivity. The modulating effects of SH2 domains for oxidation of these PTPs are in support of an enhanced oxidation susceptibility of activated SHPs.  相似文献   

2.
为了分离纯化SHP-1/SHP-2催化活性域蛋白(分别命名为D1C/D2C), 并估测其动力学常数, 将已经构建好的D1C/D2C重组质粒转化Escherichia coli BL21菌株, 经IPTG诱导表达、菌体裂解缓冲液悬浮和超声波破碎后, 通过HPLC分离纯化D1C/D2C蛋白, 所得产物进行SDS-PAGE电泳检测。然后, 以pY作为去磷酸化反应的底物, 利用孔雀绿显色法, 通过双倒数作图法对纯化的D1C/D2C蛋白进行动力学分析。结果表明, 本试验已成功地表达了D1C和D2C蛋白, 主要以可溶性蛋白的形式表达; 利用HPLC技术可有效地对D1C/D2C蛋白进行分离纯化; D1C的相对分子质量为34.6 kD, 米氏常数Km=2.04 mmol/L, 催化常数Kcat=44.98 s, 特异性常数Kcat/Km=22.05 L/(mmol·s); D2C的相对分子质量为35.3 kD, 米氏常数Km=2.47 mmol/L, 催化常数Kcat=27.45 s, 特异性常数Kcat/Km=11.11 L/(mmol·s); D1C的磷酸酶活性较强于D2C。  相似文献   

3.
A general, combinatorial library method for the rapid identification of high-affinity peptide ligands of protein modular domains is reported. The validity of this method has been demonstrated by determining the sequence specificity of four Src homology 2 (SH2) domains derived from protein tyrosine phosphatase SHP-1 and SHP-2 and inositol phosphatase SHIP. A phosphotyrosyl (pY) peptide library was screened against the SH2 domains, and the beads that carry high-affinity ligands of the SH2 domains were identified and peptides were sequenced by partial Edman degradation and mass spectrometry. The results reveal that the N-terminal SH2 domain of SHP-2 is capable of recognizing four different classes of pY peptides. Binding competition studies suggest that the four classes of pY peptides all bind to the same site on the SH2 domain surface. The C-terminal SH2 domains of SHP-1 and SHP-2 and the SHIP SH2 domain each bind to pY peptides of a single consensus sequence. Database searches using the consensus sequences identified most of the known as well as many potential interacting proteins of SHP-1 and/or SHP-2. Several proteins are found to bind to the SH2 domains of SHP-1 and SHP-2 through a new, nonclassical ITIM motif, (V/I/L)XpY(M/L/F)XP, which corresponds to the class IV peptides selected from the pY library. The combinatorial library method should be generally applicable to other protein domains.  相似文献   

4.
A combinatorial phosphotyrosyl (pY) peptide library was screened to determine the amino acid preferences at the pY+4 to pY+6 positions for the four SH2 domains of protein-tyrosine phosphatases SHP-1 and SHP-2. Individual binding sequences selected from the library were resynthesized and their binding affinities and specificities to various SH2 domains were further evaluated by SPR studies, stimulation of SHP-1 and SHP-2 phosphatase activity, and in vitro pulldown assays. These studies reveal that binding of a pY peptide to the N-SH2 domain of SHP-2 is greatly enhanced by a large hydrophobic residue (Trp, Tyr, Met, or Phe) at the pY+4 and/or pY+5 positions, whereas binding to SHP-1 N-SH2 domain is enhanced by either hydrophobic or positively charged residues (Arg, Lys, or His) at these positions. Similar residues at the pY+4 to pY+6 positions are also preferred by SHP-1 and SHP-2 C-SH2 domains, although their influence on the overall binding affinities is much smaller compared with the N-SH2 domains. A structural model was generated to qualitatively interpret the contribution of the pY+4 and pY+5 residues to the overall binding affinity. Examination of pY motifs from known SHP-1 and SHP-2-binding proteins shows that many of the pY motifs contain a hydrophobic or positively charged residue(s) at the pY+4 and pY+5 positions.  相似文献   

5.
6.
Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected H2O2-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes. [BMB Reports 2015; 48(3): 184-189]  相似文献   

7.
The tyrosine phosphatase SHP-1 functions as a negative regulator in hematopoietic cell development, proliferation, and receptor-mediated cellular activation. In Jurkat T cells, a major 68-kDa band and a minor 70-kDa band were immunoprecipitated by a monoclonal antibody against the SHP-1 protein-tyrosine phosphatase domain, while an antibody against the SHP-1 C-terminal 19 amino acids recognized only the 68-kDa SHP-1. The SDS-gel-purified 70-kDa protein was subjected to tryptic mapping and microsequencing, which was followed by molecular cloning. It revealed that the 70-kDa protein, termed SHP-1L, is a C-terminal alternatively spliced form of SHP-1. SHP-1L is 29 amino acids longer than SHP-1, and its 66 C-terminal amino acids are different from SHP-1. The C terminus of SHP-1L contains a proline-rich motif PVPGPPVLSP, a potential Src homology 3 domain-binding site. In contrast to SHP-1, tyrosine phosphorylation of SHP-1L is not detected upon stimulation in Jurkat T cells. This is apparently due to the lack of a single in vivo tyrosine phosphorylation site, which only exists in the C terminus of SHP-1 (Y564). COS cell-expressed glutathione S-transferase-SHP-1L can dephosphorylate tyrosine-phosphorylated ZAP70. At pH 7.4, SHP-1L was shown to be more active than SHP-1 in the dephosphorylation of ZAP70. At pH 5.4, SHP-1L and SHP-1 exhibited similar catalytic activity. It is likely that these two isoforms play different roles in the regulation of hematopoietic cell signal transduction.  相似文献   

8.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

9.
10.
Recognition of antigen by the B cell antigen receptor (BCR) determines the subsequent fate of a B cell and is regulated in part by the involvement of other surface molecules, termed coreceptors. CD22 is a B cell-restricted coreceptor that gets rapidly tyrosyl-phosphorylated and recruits various signaling molecules to the membrane following BCR ligation. Although CD22 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), only the two carboxyl-terminal ITIM tyrosines are required for efficient recruitment of the SHP-1 phosphatase after BCR ligation. Furthermore, Grb2 is inducibly recruited to CD22 in human and murine B cells. Unlike SHP-1, Grb2 recruitment to CD22 is not inhibited by specific doses of the Src family kinase-specific inhibitor PP1. The tyrosine residue in CD22 required for Grb2 recruitment (Tyr-828) is distinct and independent from the two ITIM tyrosines required for efficient SHP-1 recruitment (Tyr-843 and Tyr-863). Individually both Lyn and Syk are required for maximal phosphorylation of CD22 following ligation of the BCR, and together Lyn and Syk are required for all of the constitutive and induced tyrosine phosphorylation of CD22. We propose that the cytoplasmic tail of CD22 contains two domains that regulate signal transduction pathways initiated by the BCR and B cell fate.  相似文献   

11.
SHP-1 and SHP-2 are two SH2 domain-containing tyrosine phosphatases. They share significant overall sequence identity but their functions are often opposite. The mechanism underlying this is not well understood. In this study, we have investigated the association of SHP-1 and SHP-2 with tyrosine-phosphorylated proteins in mouse tissues and in cultured cells treated with a potent tyrosine phosphatase inhibitor, pervanadate. Pervanadate was introduced into mice by intravenous injection. It induced robust tyrosine phosphorylation of cellular proteins in a variety of tissues. Both SHP-1 and SHP-2 were phosphorylated on tyrosyl residues upon pervanadate treatment, and they became associated with distinct tyrosine-phosphorylated proteins in different tissues and cells. Among these proteins, PZR and PECAM were identified as major SHP-2-binding proteins while LAIR-1 was shown to be a major SHP-1-binding protein. A number of other proteins are to be identified. We believe that the different binding proteins may determine the distinct physiological functions of SHP-1 and SHP-2. The present study also provides a general method to induce tyrosine phosphorylation of cellular proteins and to study protein-protein interactions involving tyrosine phosphorylation in vivo and in vitro.  相似文献   

12.
Protein tyrosine phosphatases (PTPs) are important regulators of cell functions but data on different PTP expression and dynamics in acute pancreatitis (AP) are very scarce. Additionally, both c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK1/2), together with intracellular cAMP levels in inflammatory cells, play an essential role in AP. In this study we have detected an increase in PTP SHP-1 and SHP-2 in the pancreas at the level of both protein and mRNA as an early event during the development of Cerulein (Cer)-induced AP in rats. Nevertheless, while SHP-2 protein returned to baseline levels in the intermediate or later phases of AP, SHP-1 protein expression remained increased throughout the development of the disease. The increase in SHP-2 protein expression was associated with changes in its subcellular distribution, with higher percentages located in the fractions enriched in lysosomes+mitochondria or microsomes. Furthermore, while the increase in SHP-2 protein was also observed in sodium-taurocholate duct infusion or bile-pancreatic duct obstruction AP, that of SHP-1 was specific to the Cer-induced model. Neutrophil infiltration did not affect the increase in SHP-1 protein, but favoured the return of SHP-2 protein to control levels, as indicated when rats were rendered neutropenic by the administration of vinblastine sulfate. Inhibition of JNK and ERK1/2 with SP600125 pre-treatment further increased the expression of both SHP-1 and SHP-2 proteins in the early phase of Cer-induced AP, while the inhibition of type IV phosphodiesterase with rolipram only suppressed the increase in SHP-2 protein expression during the same phase. Our results show that AP is associated with increases in the expression of SHP-1 and SHP-2 and changes in the dynamics of SHP-2 subcellular distribution in the early phase of Cer-induced AP. Finally, both JNK and ERK1/2 and intracellular cAMP levels are able to modulate the expression of these PTPs.  相似文献   

13.
SHP-2, a nontransmembrane-type protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains, is thought to participate in growth factor signal transduction pathways via SH2 domain interactions. To determine the role of each region of SHP-2 in platelet-derived growth factor signaling assayed by Elk-1 activation, we generated six deletion mutants of SHP-2. The large SH2 domain deletion SHP-2 mutant composed of amino acids 198-593 (SHP-2-(198-593)), but not the smaller SHP-2-(399-593), showed significantly higher SHP-2 phosphatase activity in vitro. In contrast, SHP-2-(198-593) mutant inhibited wild type SHP-2 phosphatase activity, whereas SHP-2-(399-593) mutant increased activity. To understand these functional changes, we focused on the docking protein Gab1 that assembles signaling complexes. Pull-down experiments with Gab1 suggested that the C-terminal region of SHP-2 as well as the SH2 domains (N-terminal region) associated with Gab1, but the SHP-2-(198-593) mutant did not associate with Gab1. SHP-2-(1-202) or SHP-2-(198-593) inhibited platelet-derived growth factorinduced Elk-1 activation, but SHP-2-(399-593) increased Elk-1 activation. Co-expression of SHP-2-(1-202) with SHP-2-(399-593) inhibited SHP-2-(399-593)/Gab1 interaction, and the SHP-2-(399-593) mutant induced SHP-2 phosphatase and Elk-1 activation, supporting the autoinhibitory effect of SH2 domains on the C-terminal region of SHP-2. These data suggest that both SHP-2/Gab1 interaction in the C-terminal region of SHP-2 and increased SHP-2 phosphatase activity are important for Elk-1 activation. Furthermore, we identified a novel sequence for SHP-2/Gab1 interactions in the C-terminal region of SHP-2.  相似文献   

14.
Cell signaling does not occur randomly over the cell surface, but is integrated within cholesterol-enriched membrane domains, termed rafts. By targeting SHP-2 to raft domains or to a non-raft plasma membrane fraction, we studied the functional role of rafts in signaling. Serum-depleted, nonattached cells expressing the raft SHP-2 form, but not non-raft SHP-2, display signaling events resembling those observed after fibronectin attachment, such as beta1 integrin clustering, 397Y-FAK phosphorylation, and ERK activation, and also increases Rho-GTP levels. Expression of the dominant negative N19Rho abrogates raft-SHP-2-induced signaling, suggesting that Rho activation is a downstream event in SHP-2 signaling. Expression of a catalytic inactive SHP-2 mutant abrogates the adhesion-induced feedback inhibition of Rho activity, suggesting that SHP-2 contributes to adhesion-induced suppression of Rho activity. Because raft recruitment of SHP-2 occurs physiologically after cell attachment, these results provide a mechanism by which SHP-2 may influence cell adhesion and migration by spatially regulating Rho activity.  相似文献   

15.
Poole AW  Jones ML 《Cellular signalling》2005,17(11):1323-1332
Protein tyrosine phosphorylation is a ubiquitous signalling mechanism and is regulated by a balance between the action of kinases and phosphatases. The SH2 domain-containing phosphatases SHP-1 and SHP-2 are the best studied of the classical non-receptor tyrosine phosphatases, but it is intriguing that despite their close sequence and structural homology these two phosphatases play quite different cellular roles. In particular, whereas SHP-1 plays a largely negative signalling role suppressing cellular activation, SHP-2 plays a largely positive signalling role. Major sequence differences between the two molecules are apparent in the approximately 100 amino acid residues at the extreme C-terminus of the proteins, beyond the phosphatase catalytic domain. Here we review how the differences in the tails of these proteins may regulate their activities and explain some of their functional differences.  相似文献   

16.
SHP-1 and SHP-2 are two Src homology 2 domain-containing tyrosine phosphatases with major pathological implications in cell growth regulating signaling. They share significant overall sequence identity, but their biological functions are often opposite. SHP-1 is generally considered as a negative signal transducer and SHP-2 as a positive one. However, the precise role of each enzyme in shared signaling pathways is not well defined. In this study, we investigated the interaction of these two enzymes in a single cell system by knocking down their expressions with small interfering RNAs and analyzing the effects on epidermal growth factor signaling. Interestingly, knockdown of either SHP-1 or SHP-2 caused significant reduction in the activation of ERK1/2 but not Akt. Furthermore, SHP-1, SHP-2, and Gab1 formed a signaling complex, and SHP-1 and SHP-2 interact with each other. The interaction of SHP-1 with Gab1 is mediated by SHP-2 because it was abrogated by knockdown of SHP-2, and SHP-2, but not SHP-1, binds directly to tyrosine-phosphorylated Gab1. Together, the data revealed that both SHP-1 and SHP-2 have a positive role in epidermal growth factor-induced ERK1/2 activation and that they act cooperatively rather than antagonistically. The interaction of SHP-1 and SHP-2 may be responsible for previously unexpected novel regulatory mechanism of cell signaling by tyrosine phosphatases.  相似文献   

17.
Zheng Wu  Ming Lu  Tingting Li 《Amino acids》2014,46(8):1919-1928
Tyrosine phosphorylation plays crucial roles in numerous physiological processes. The level of phosphorylation state depends on the combined action of protein tyrosine kinases and protein tyrosine phosphatases. Detection of possible phosphorylation and dephosphorylation sites can provide useful information to the functional studies of relevant proteins. Several studies have focused on the identification of protein tyrosine kinase substrates. However, compared with protein tyrosine kinases, the prediction of protein tyrosine phosphatase substrates involved in the balance of protein phosphorylation level falls behind. This paper described a method that utilized the k-nearest neighbor algorithm to identity the substrate sites of three protein tyrosine phosphatases based on the sequence features of manually collected dephosphorylation sites. In the performance evaluation, both sensitivities and specificities could reach above 75 % for all three protein tyrosine phosphatases. Finally, the method was applied on a set of known tyrosine phosphorylation sites to search for candidate substrates.  相似文献   

18.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

19.
Miller DA  Walsh CT 《Biochemistry》2001,40(17):5313-5321
The HMWP2 subunit of yersiniabactin (Ybt) synthetase, a 230 kDa nonribosomal peptide synthetase (NRPS) making the N-terminus of the Ybt siderophore of Yersinia pestis, has one cysteine-specific adenylation (A) domain, three carrier protein domains (ArCP, PCP1, PCP2), and two heterocyclization domains (Cy1, Cy2). The A domain loads the two PCP domains with cysteines that get heterocyclized by the Cy domains to yield a tricyclic hydroxyphenylthiazolinylthiazolinyl (HPTT) chain lodged in thioester linkage to the PCP2 domain. The interdomain recognition by the Cy1 and Cy2 domains for the three carrier proteins was tested using inactivating mutations at the conserved serine that is phosphopantetheinylated in each carrier domain (S52A, S1439A, and S1977A). These mutant forms of HMWP2 were tested for in trans complementation by carrier protein fragments: holo-ArCPs (S52A), holo-PCP1 and analogues (S1439A), and holo-PCP2 and analogues (S1977A). The S52A mutant tests the recognition of the Cy1 domain for donor acyl-ArCP substrates, while the S1439A mutant tests the specificity of the same Cy1 domain for downstream substrates presented by distinct PCPs. The S1439A likewise tests the recognition of Cy2 for its upstream PCP-tethered acyl donor. The S1977A mutant analogously tests the Cy2 domain for downstream Cys-PCP recognition. In all cases in trans complementation was successful with the carrier protein fragments, allowing kinetic probes of catalytic efficiency for PCP scaffolds and for uncoupling of the condensation and heterocyclization functions of Cy1 and Cy2. Overall, the Cy domains tested showed a definite selectivity for the upstream protein scaffold but were more relaxed toward the downstream acceptor protein. This work points to the importance of protein-protein interactions in mediating directional chain growth in NRPS and presents the first systematic exploration of how the protein scaffolds affect catalytic efficiency.  相似文献   

20.
The substrate specificity of catalytic domains and the activation of full length protein tyrosine phosphatases, SHP-1 and SHP-2 have been investigated using synthetic phosphotyrosyl peptides derived from SIPRalpha1. We found that the catalytic domains of SHP-1 and SHP-2 exhibit different substrate specificity towards a longer trideca-peptide pY(469+3) ((-7)RPEDTLTpYADLDM(+5)) and not to the shorter decapeptide pY(469) ((-5)EDTLTpYADLD(+4)), the former being the substrate of SHP-2 only. Furthermore, the activation of full-length SHP-1 and not the SHP-2 by the deca/trideca-peptides suggested SIRPalpha 1 to be possibly acting as both an upstream activator and a substrate for SHP-1, and merely as the downstream substrate for SHP-2 in signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号