首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

2.
3.
Quantitation of GFP-fusion proteins in single living cells   总被引:9,自引:0,他引:9  
  相似文献   

4.
Liu KJ  Wang TH 《Biophysical journal》2008,95(6):2964-2975
Cylindrical illumination confocal spectroscopy (CICS) is a new implementation of single molecule detection that can be generically incorporated into any microfluidic system and allows highly quantitative and accurate analysis of single fluorescent molecules. Through theoretical modeling of confocal optics and Monte Carlo simulations, one-dimensional beam shaping is used to create a highly uniform sheet-like observation volume that enables the detection of digital fluorescence bursts while retaining single fluorophore sensitivity. First, we theoretically show that when used to detect single molecules in a microchannel, CICS can be optimized to obtain near 100% mass detection efficiency, <10% relative SD in burst heights, and a high signal/noise ratio. As a result, CICS is far less sensitive to thresholding artifacts than traditional single molecule detection and significantly more accurate at determining both burst rate and burst parameters. CICS is then experimentally implemented, optically characterized, and integrated into separate two microfluidic devices for the analysis of fluorescently stained plasmid DNA and single Cy5 labeled oligonucleotides. CICS rectifies the limitations of traditional confocal spectroscopy-based single molecule detection without the significant operational complications of competing technologies.  相似文献   

5.
We present a novel assay for rapid and highly sensitive detection of specific nucleic acid fragments in human serum. In a magnetic modulation biosensing (MMB) system, magnetic beads and fluorescently labeled probes are attached to the target analyte and form a “sandwich” complex. An alternating external magnetic field gradient condenses the magnetic beads (and hence the target molecules with the fluorescently labeled probes) to the detection volume and sets them in a periodic motion, in and out of a laser beam. A synchronous detection enables the removal of background signal from the oscillating target signal without complicated sample preparation. The high sensitivity of the MMB system, combined with the specificity of a sandwich hybridization assay, enables detection of DNA fragments without enzymatic signal amplification. Here, we demonstrate the sensitivity of the assay by directly detecting the EML4‐ALK oncogenic translocation sequence spiked in human serum. The calculated limit of detection is 1.4 pM, which is approximately 150 times better than a conventional plate reader. In general, the MMB‐assisted SHA can be implemented in many other applications for which enzymatic amplification, such as PCR, is not applicable and where rapid detection of specific nucleic acid targets is required.  相似文献   

6.
7.
Rapid DNA sequencing based upon single molecule detection   总被引:1,自引:0,他引:1  
We are developing a laser-based technique for the rapid sequencing of 40-kb or larger fragments of DNA at a rate of 100 to 1000 bases per second. The approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA fragment into a flowing sample stream, and detection of individual fluorescently labeled bases as they are cleaved from the DNA fragment by an exonuclease. The ability to sequence large fragments of DNA will significantly reduce the amount of subcloning and the number of overlapping sequences required to assemble megabase segments of sequence information.  相似文献   

8.
Recent developments of single molecule detection techniques and in particular the introduction of fluorescence correlation spectroscopy (FCS) led to a number of important applications in biological research. We present a unique approach for the gene expression analysis using dual-color cross-correlation. The expression assay is based on gene-specific hybridization of two dye-labeled DNA probes to a selected target gene. The counting of the dual-labeled molecules within the solution allows the quantification of the expressed gene copies in absolute numbers. As detection and analysis by FCS can be performed at the level of single molecules, there is no need for any type of amplification. We describe the gene expression assay and present data demonstrating the capacity of this novel technology. In order to prove the gene specificity, we performed experiments with gene-depleted total cDNA. The biological application was demonstrated by quantifying selected high, medium and low abundant genes in cDNA prepared from HL-60 cells.  相似文献   

9.
This article presents a new, highly sensitive method for the identification of single nucleotide polymorphisms (SNPs) in homogeneous solutions using fluorescently labeled hairpin-structured oligonucleotides (smart probes) and fluorescence single-molecule spectroscopy. While the hairpin probe is closed, fluorescence intensity is quenched due to close contact between the chromophore and several guanosine residues. Upon hybridization to the respective target SNP sequence, contact is lost and the fluorescence intensity increases significantly. High specificity is achieved by blocking sequences containing mismatch with unlabeled oligonucleotides. Time-resolved single-molecule fluorescence spectroscopy enables the detection of individual smart probes passing a small detection volume. This method leads to a subnanomolar sensitivity for this single nucleotide specific DNA assay technique.  相似文献   

10.
Express hybridization of molecular colonies with fluorescent probes   总被引:1,自引:0,他引:1  
DNA colonies formed during PCR in a polyacrylamide gel and RNA colonies grown in an agarose gel containing Qbeta replicase can be identified using the procedure of transfer of molecular colonies onto a nylon membrane followed by membrane hybridization with fluorescent oligonucleotide probes. The suggested improvements significantly simplify and accelerate the procedure. By the example of a chimeric AML1-ETO sequence, a marker of frequently occurring leukemia, the express hybridization method was shown to allow the rapid identification of single molecules and the determination of titers of DNA and RNA targets. Hybridization with a mixture of two oligonucleotide probes labeled with different fluorophores complementary to components of the chimeric molecule ensures the identification of molecular colonies containing both parts of the chimeric sequence and improves the specificity of diagnostics.  相似文献   

11.
Nucleic acid-based RNA detection is a promising field in molecular biotechnology that is leading to the rapid and accurate identification of microorganisms, diagnosis of infections and imaging of gene expression. The specificity of short synthetic DNA probes raises the hope of distinguishing small differences in sequence, ultimately achieving single nucleotide resolution. Recent work using quenched fluorescently labeled oligonucleotide probes as sensors for RNA in bacterial and human cells has overcome several difficult hurdles on the way to these goals, including delivery of probes to live cells, accessing RNA sites containing a high degree of secondary structure, and eliminating many sources of background. Two new classes of quenched oligonucleotide probes, molecular beacons and quenched auto-ligation probes, have shown the most promise for in situ RNA detection. High-specificity detection, at the single-nucleotide resolution level, is now possible in solution with these classes of probes. However, for applications in intact cells, signal and background issues still need to be addressed before the full potential of these methods is achieved.  相似文献   

12.
Um SH  Lee JB  Kwon SY  Li Y  Luo D 《Nature protocols》2006,1(2):995-1000
A major challenge in clinical diagnostics and environmental analysis is the difficulty in rapid and sensitive detection of multiple target molecules simultaneously (i.e., multiplexed detections). Our group has designed and synthesized a dendrimer-like DNA (DL-DNA) that is multivalent and anisotropic; using this unique DNA structure, we have developed a fluorescence-tagged nanobarcode system for multiplex detection. This nanobarcode system allows the rapid and sensitive detection of multiple pathogens simultaneously using the ratios of two different fluorescent dyes, green and red, with which different DL-DNAs are labeled. The key step of our nanobarcode model lies in the monodisperse preparation of DL-DNA. Two methods, solution phase and solid phase, are presented here. With slight modifications, this platform technology can also be extended to the multiplexed detection of RNA and proteins. This protocol can be completed in 2-5 d.  相似文献   

13.
14.
15.
DNA colonies formed during PCR in a polyacrylamide gel and RNA colonies grown in an agarose gel containing Qβ replicase can be identified using the procedure of transfer of molecular colonies onto a nylon membrane followed by membrane hybridization with fluorescent oligonucleotide probes. The suggested improvements significantly simplify and shorten the procedure. By the example of a chimeric AML1-ETO sequence, a marker of frequently occurring leukemia, the express hybridization method was shown to allow the rapid identification of single molecules and the determination of titers of DNA and RNA targets. Hybridization with a mixture of two oligonucleotide probes labeled with different fluorophores complementary to components of the chimeric molecule ensures the identification of molecular colonies containing both parts of the chimeric sequence and improves the specificity of diagnostics.  相似文献   

16.
The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure.  相似文献   

17.
Imaging individual mRNA molecules using multiple singly labeled probes   总被引:1,自引:0,他引:1  
We describe a method for imaging individual mRNA molecules in fixed cells by probing each mRNA species with 48 or more short, singly labeled oligonucleotide probes. This makes each mRNA molecule visible as a computationally identifiable fluorescent spot by fluorescence microscopy. We demonstrate simultaneous detection of three mRNA species in single cells and mRNA detection in yeast, nematodes, fruit fly wing discs, and mammalian cell lines and neurons.  相似文献   

18.
Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2′OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs.  相似文献   

19.
The paper describes a sensitive latex hybridization assay (LHA) method applied for indirect detection of biotinylated nucleic acid hybrids immobilized on a synthetic membrane. The biotinylated hybrids were visualized by means of latex particles containing the fluorescent dye pyronine G and coated with streptavidin; 1.6 and 0.3 pg of lambda-phage DNA was detected by dot blot hybridizations on nylon membrane and polyethyleneimine-cellophane, respectively. The assay sensitivity was increased by three orders of magnitude over that with fluorescently labeled probes due to encapsulation of the fluorescent dye in polymer particles. LHA is simple (single-stage detection procedure), fast, and more sensitive than any of the other nonradioactive hybridization methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号