首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jang YH  Byun YH  Lee YJ  Lee YH  Lee KH  Seong BL 《Journal of virology》2012,86(10):5953-5958
The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges. Our results not only accentuate the merit of using live attenuated influenza virus vaccines in view of cross-reactivity but also represent the potential of CApH1N1 live vaccine for mitigating the clinical severity of infections that arise from reassortments between pH1N1 and highly pathogenic H5 subtype viruses.  相似文献   

2.
A current view of the emergence of pandemic influenza viruses envisages a gene flow from the aquatic avian reservoir to humans via reassortment in pigs, the hypothetical "mixing vessel." Understanding arising from recent H5N1 influenza outbreaks in Hong Kong since 1997 and the isolation of avian H9N2 virus from humans raises alternative options for the emergence of a new pandemic virus. Here we report that H9N2 influenza viruses established in terrestrial poultry in southern China are transmitted back to domestic ducks, in which the viruses generate multiple reassortants. These novel H9N2 viruses are double or even triple reassortants that have amino acid signatures in their hemagglutinin, indicating their potential to directly infect humans. Some of them contain gene segments that are closely related to those of A/Hong Kong/156/97 (H5N1/97, H5N1) or A/Quail/Hong Kong/G1/97 (G1-like, H9N2). More importantly, some of their internal genes are closely related to those of novel H5N1 viruses isolated during the outbreak in Hong Kong in 2001. This study reveals a two-way transmission of influenza virus between terrestrial and aquatic birds that facilitates the generation of novel reassortant H9N2 influenza viruses. Such reassortants may directly or indirectly play a role in the emergence of the next pandemic virus.  相似文献   

3.
Highly pathogenic avian influenza A virus subtype H5N1 has been endemic in some bird species since its emergence in 1996 and its ecology, genetics and antigenic properties have continued to evolve. This has allowed diverse virus strains to emerge in endemic areas with altered receptor specificity, including a new H5 sublineage with enhanced binding affinity to the human-type receptor. The pandemic potential of H5N1 viruses is alarming and may be increasing. We review here the complex dynamics and changing nature of the H5N1 virus that may contribute to the emergence of pandemic strains.  相似文献   

4.
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary “dead end.” We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.  相似文献   

5.
Emerging influenza virus: A global threat   总被引:1,自引:0,他引:1  
Since 1918, influenza virus has been one of the major causes of morbidity and mortality, especially among young children. Though the commonly circulating strain of the virus is not virulent enough to cause mortality, the ability of the virus genome to mutate at a very high rate may lead to the emergence of a highly virulent strain that may become the cause of the next pandemic. Apart from the influenza virus strain circulating in humans (H1N1 and H3N2), the avian influenza H5N1 H7 and H9 virus strains have also been reported to have caused human infections, H5N1 H7 and H9 have shown their ability to cross the species barrier from birds to humans and further replicate in humans. This review addresses the biological and epidemiological aspects of influenza virus and efforts to have a control on the virus globally.  相似文献   

6.
The last decade has seen the emergence of two new influenza A subtypes and they have become a cause of concern for the global community. These are the highly pathogenic H5N1 influenza A virus (H5N1) and the Pandemic 2009 influenza H1N1 virus. Since 2003 the H5N1 virus has caused widespread disease and death in poultry, mainly in south East Asia and Africa. In humans the number of cases infected with this virus is few but the mortality has been about 60%. Most patients have presented with severe pneumonia and acute respiratory distress syndrome. The second influenza virus, the pandemic H1N1 2009, emerged in Mexico in March this year. This virus acquired the ability for sustained human to human spread and within a few months spread throughout the world and infected over 4 lakh individuals. The symptoms of infection with this virus are similar to seasonal influenza but it currently affecting younger individuals more often. Fortunately the mortality has been low. Both these new influenza viruses are currently circulating and have different clinical and epidemiological characteristics.  相似文献   

7.
Influenza viruses are among the most important human pathogens and are responsible for annual epidemics and sporadic, potentially devastating pandemics. The humoral immune response plays an important role in the defense against these viruses, providing protection mainly by producing antibodies directed against the hemagglutinin (HA) glycoprotein. However, their high genetic variability allows the virus to evade the host immune response and the potential protection offered by seasonal vaccines. The emergence of resistance to antiviral drugs in recent years further limits the options available for the control of influenza. The development of alternative strategies for influenza prophylaxis and therapy is therefore urgently needed. In this study, we describe a human monoclonal antibody (PN-SIA49) that recognizes a highly conserved epitope located on the stem region of the HA and able to neutralize a broad spectrum of influenza viruses belonging to different subtypes (H1, H2 and H5). Furthermore, we describe its protective activity in mice after lethal challenge with H1N1 and H5N1 viruses suggesting a potential application in the treatment of influenza virus infections.  相似文献   

8.
A novel avian influenza A H7N9-subtype virus emerged in China in 2013 and threatened global public health. Commercial kits that specifically detect avian influenza A (H7N9) virus RNA are urgently required to prepare for the emergence and potential pandemic of this novel influenza virus. The safety and effectiveness of three commercial molecular diagnostic assays were evaluated using a quality-control panel and clinical specimens collected from over 90 patients with confirmed avian influenza A (H7N9) virus infections. The analytical performance evaluation showed that diverse influenza H7N9 viruses can be detected with high within- and between-lot reproducibility and without cross-reactivity to other influenza viruses (H1N1 pdm09, seasonal H1N1, H3N2, H5N1 and influenza B). The detection limit of all the commercial assays was 2.83 Log10 copies/μl [0.7 Log10TCID50/mL of avian influenza A (H7N9) virus strain A/Zhejiang/DTID-ZJU01/2013], which is comparable to the method recommended by the World Health Organization (WHO). In addition, using a WHO-Chinese National Influenza Center (CNIC) method as a reference for clinical evaluation, positive agreement of more than 98% was determined for all of the commercial kits, while negative agreement of more than 99% was observed. In conclusion, our findings provide comprehensive evidence for the high performance of three commercial diagnostic assays and suggest the application of these assays as rapid and effective diagnostic tools for avian influenza A (H7N9) virus in the routine clinical practice of medical laboratories.  相似文献   

9.
Avian influenza virus, a very sticky situation   总被引:1,自引:0,他引:1  
The appearance of the highly pathogenic avian influenza virus H5N1 highlighted the potential impact of influenza virus on humanity. The emergence of this high profile virus stimulated much research towards a better understanding of the key determinants for successful human-to-human transmission and as such has provided new directions for therapeutic intervention strategies. For example, a phylogenetic-based grouping of influenza virus sialidases into either Group 1 or 2 has been proposed. This has provided new opportunity for the development of Group 1-specific anti-influenza drugs. Furthermore, a number of next generation sialidase inhibitors as anti-influenza drugs have also been developed.  相似文献   

10.
Chen LM  Davis CT  Zhou H  Cox NJ  Donis RO 《PLoS pathogens》2008,4(5):e1000072
The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian-human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs.  相似文献   

11.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

12.
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia. Due to their host-range diversity, genetic and antigenic diversity, and potential to reassort genetically in vivo, influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans. Thus, newly emerging viral diseases are always major threats to public health. In March 2009, a novel influenza virus suddenly emerged and caused a worldwide pandemic. The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses; it was identified to have originated from pigs, and further genetic analysis revealed it as a subtype of A/H1N1, thus later called a swine-origin influenza virus A/H1N1. Since the novel virus emerged, epidemiological surveys and research on experimental animal models have been conducted, and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated. In this editorial, we summarize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.  相似文献   

13.
A new strain of influenza A (H1N1) virus is a major cause of morbidity and mortality around the world. The neuraminidase of the influenza virus has been the most potential target for the anti-influenza drugs such as oseltamivir and zanamivir. However, the emergence of drug-resistant variants of these drugs makes a pressing need for the development of new neuraminidase inhibitors for controlling illness and transmission. Here a 3D structure model of H1N1 avian influenza virus neuraminidase type 1 (N1) was constructed based on the structure of the template H5N1 avian influenza virus N1. Upon application of virtual screening technique for N1 inhibitors, two novel compounds (ZINC database ID: ZINC02128091, ZINC02098378) were found as the most favorable interaction energy with N1. Docking results showed that the compounds bound not only in the active pocket, but also in a new hydrophobic cave which contains Arg368, Trp399, Ile427, Pro431 and Lys432 of N1. Our result suggested that both of the screened compounds containing the hydrophobic group bring a strong conjugation effect with Arg293, Arg368 Lys432 of N1 by pi-pi interaction. However, the control inhibitors zanamivir and oseltamivir do not have this effect. The details of N1-compound binding structure obtained will be valuable for the development of a new anti-influenza virus agent.  相似文献   

14.
A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.  相似文献   

15.
The variation of highly pathogenic avian influenza H5N1 virus results in gradually increased virulence in poultry, and human cases continue to accumulate. The neuraminidase (NA) stalk region of influenza virus varies considerably and may associate with its virulence. The NA stalk region of all N1 subtype influenza A viruses can be divided into six different stalk-motifs, H5N1/2004-like (NA-wt), WSN-like, H5N1/97-like, PR/8-like, H7N1/99-like and H5N1/96-like. The NA-wt is a special NA stalk-motif which was first observed in H5N1 influenza virus in 2000, with a 20-amino acid deletion in the 49th to 68th positions of the stalk region. Here we show that there is a gradual increase of the special NA stalk-motif in H5N1 isolates from 2000 to 2007, and notably, the special stalk-motif is observed in all 173 H5N1 human isolates from 2004 to 2007. The recombinant H5N1 virus with the special stalk-motif possesses the highest virulence and pathogenicity in chicken and mice, while the recombinant viruses with the other stalk-motifs display attenuated phenotype. This indicates that the special stalk-motif has contributed to the high virulence and pathogenicity of H5N1 isolates since 2000. The gradually increasing emergence of the special NA stalk-motif in H5N1 isolates, especially in human isolates, deserves attention by all.  相似文献   

16.
Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC(50)] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC(50) increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (V(max) and K(m)) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.  相似文献   

17.
The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were isolated by bioassay-guided fractionation from the EtOAc-soluble extract of Polygala karensium. Compounds 1, 3, 5, 7, and 9 with a hydroxy group at C-1 showed strong inhibitory effects on neuraminidases from various influenza viral strains, H1N1, H9N2, novel H1N1 (WT), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells. In addition, these compounds reduced the cytopathic effect of H1N1 swine influenza virus in MDCK cells. Our results suggest that xanthones from P. karensium may be useful in the prevention and treatment of disease by influenza viruses.  相似文献   

18.
The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.  相似文献   

19.
In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.  相似文献   

20.
Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号