首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenesis of two of the most severe complications of Plasmodium falciparum malaria, cerebral malaria (CM) and severe malarial anaemia (SA) both appear to involve dysregulation of the immune system. We have measured plasma levels of TNF and its two receptors in Ghanaian children with strictly defined cerebral malaria (CM), severe malarial anaemia (SA), or uncomplicated malaria (UM) in two independent studies in an area of seasonal, hyperendemic transmission of P. falciparum. Levels of TNF, soluble TNF receptor 1 (sTNF-R1) and 2 (sTNF-R2) were found to be significantly higher in CM than in the other clinical categories of P. falciparum malaria patients. Levels of both receptors depended on clinical category, whereas only sTNF-R1 levels were significantly dependent on parasitemia. Detailed analysis of the interrelationship between these variables resolved this pattern further, and identified marked differences between the patient categories. While levels of TNF, sTNF-R1 and sTNF-R2 correlated with parasitemia in UM, this was not the case in CM and SA. Rather, there was a tendency towards high levels of TNF and its receptors in CM and low levels in SA without significant correlation to parasitemia in either category. This, and the fact that malaria-induced increases in plasma levels of IL-10 are much lower in SA compared to CM, suggest that distinct forms of dysregulation of the immune response to infection contribute to the pathogenesis of CM and SA.  相似文献   

2.
We have recently proposed a new model for antigenic variation in Plasmodium falciparum that relies on a network of partially cross-protective immune responses to orchestrate this complex immune evasion process. In addition to exhibiting prolonged oscillations of single variants that resemble the sequential dominance of immunologically distinct antigenic types, the model implies that a higher efficacy of cross-reactive immunity actually increases the length of infection while reducing severity of disease. Here, we analyse the behaviour of a reduced system under conditions of perfect synchrony between variants to demonstrate that these features of this system can be attributed to the antagonism between cross-reactive and variant-specific responses.  相似文献   

3.
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.  相似文献   

4.
Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in na?ve human volunteers undergoing single (n?=?5) or multiple (n?=?10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only 'adaptive' but also 'innate' lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO(+) CD62L(-) effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ(+)IL-2(+)) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field.  相似文献   

5.

Background

Effective mating between laboratory-reared males and wild females is paramount to the success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically modified male mosquitoes. However mosquito colonization and laboratory maintenance have the potential to negatively affect male genotypic and phenotypic quality through inbreeding and selection, which in turn can decrease male mating competitiveness in the field. To date, very little is known about the impact of those evolutionary forces on the reproductive biology of mosquito colonies and how they ultimately affect male reproductive fitness.

Methods

Here several male reproductive physiological traits likely to be affected by inbreeding and selection following colonization and laboratory rearing were examined. Sperm length, and accessory gland and testes size were compared in male progeny from field-collected females and laboratory strains of Anopheles gambiae sensu stricto colonized from one to over 25 years ago. These traits were also compared in the parental and sequentially derived, genetically modified strains produced using a two-phase genetic transformation system. Finally, genetic crosses were performed between strains in order to distinguish the effects of inbreeding and selection on reproductive traits.

Results

Sperm length was found to steadily decrease with the age of mosquito colonies but was recovered in refreshed strains and crosses between inbred strains therefore incriminating inbreeding costs. In contrast, testes size progressively increased with colony age, whilst accessory gland size quickly decreased in males from colonies of all ages. The lack of heterosis in response to crossing and strain refreshing in the latter two reproductive traits suggests selection for insectary conditions.

Conclusions

These results show that inbreeding and selection differentially affect reproductive traits in laboratory strains overtime and that heterotic ‘supermales’ could be used to rescue some male reproductive characteristics. Further experiments are needed to establish the exact relationship between sperm length, accessory gland and testes size, and male reproductive success in the laboratory and field settings.  相似文献   

6.
To determine the potential contribution of innate immune responses to the early proinflammatory cytokine response to Plasmodium falciparum malaria, we have examined the kinetics and cellular sources of IFN-gamma production in response to human PBMC activation by intact, infected RBC (iRBC) or freeze-thaw lysates of P. falciparum schizonts. Infected erythrocytes induce a more rapid and intense IFN-gamma response from malaria-naive PBMC than do P. falciparum schizont lysates correlating with rapid iRBC activation of the CD3(-)CD56(+) NK cell population to produce IFN-gamma. IFN-gamma(+) NK cells are detectable within 6 h of coculture with iRBC, their numbers peaking at 24 h in most donors. There is marked heterogeneity between donors in magnitude of the NK-IFN-gamma response that does not correlate with mitogen- or cytokine-induced NK activation or prior malaria exposure. The NK cell-mediated IFN-gamma response is highly IL-12 dependent and appears to be partially IL-18 dependent. Exogenous rIL-12 or rIL-18 did not augment NK cell IFN-gamma responses, indicating that production of IL-12 and IL-18 is not the limiting factor explaining differences in NK cell reactivity between donors or between live and dead parasites. These data indicate that NK cells may represent an important early source of IFN-gamma, a cytokine that has been implicated in induction of various antiparasitic effector mechanisms. The heterogeneity of this early IFN-gamma response between donors suggests a variation in their ability to mount a rapid proinflammatory cytokine response to malaria infection that may, in turn, influence their innate susceptibility to malaria infection, malaria-related morbidity, or death from malaria.  相似文献   

7.
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.  相似文献   

8.
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.  相似文献   

9.
After reviewing the use of non-human primates of the Old and New Worlds for human malaria research, we concluded that another experimental animal which is easily available to use and possible to rear indoors is needed. Thus, we studied the susceptibility of the marmoset Callithrix penicillata to Plasmodium falciparum erythrocytic infections. The marmosets received various P. falciparum human isolates, directly from a patient and from continuous cultures. The Palo Alto strain, which has been adapted to the night monkey Aotus trivirgatus and further maintained in the squirrel monkey Saimiri sciureus was also used. In a total of 20 marmosets we performed 31 inoculations, with 10(5) to 10(9) parasites, intraperitoneally, intracardiacly or intravenously. Blood samples from each animal were examined daily up to day 90 post-inoculation. None of the intact marmosets developed patent infections. Four out of 19 C. penicillata, previously splenectomized, showed circulating parasites for up to five days after intravenous inoculation with the Palo Alto strain, becoming negative thereafter. Neither the addition to the simian diet of p-aminobenzoic acid, essential for the parasite metabolism, nor drug-immunosuppression, improved the marmoset susceptibility to P. falciparum.  相似文献   

10.
Development of new antimalaria strategies and particularly vaccines, needs an in-depth understanding of the relationships between transmission, infection, immunity, morbidity and mortality. The intensive and longitudinal collection of entomological, parasitological and clinical data from the Senegalese populations of Dielmo (250-300 inhabitants), exposed to a perennial and intense transmission (about 200 infective bites/person/year) and of Ndiop (300-350 inhabitants) exposed to a seasonal transmission (about 20 infective bites/person/year), allows to respond to many questions about this subject. The acquisition of an antimalaria immunity as one gets older appears to reduce parasite density, complexity of infection, risk of new patent infection after a suppressive treatment but does not reduce the prevalence (as assessed by PCR) of infection which is commonly chronic and asymptomatic. The existence of a pyrogenic threshold effect of parasitaemia allows the individual diagnosis of malaria attacks. P. falciparum genotyping suggests that successive malaria attacks are due to distinct recently inoculated parasite populations that multiply initially without restriction, a dominant population is generally responsible of the clinical manifestations and all new populations do not trigger systematically attacks. The initial intensity of clinical manifestations does not differ perceptibly among children and adults, is not related to the duration of the attacks, does not allow the distinction between several types of attacks, is not predictive of their severity, and the clearance of parasites and manifestations is longer among youngest persons. The risk of malaria attacks is lower as one gets older and among carriers of AS haemoglobin, is higher when transmission increases and during pregnancy up to three months after delivery, and vary between children. The risk of malaria attack per infective bite is negatively related to the intensity of transmission. Because of their high sensitivity in malaria case detection, this type of small community-based studies are powerful and useful for the identification of protective immunological mechanisms as well as for testing rapidly and cheaply the clinical efficacy of any intervention such as antimalarial vaccines and drug therapy or prophylaxis. As a lot of vaccine candidates and drug combinations will be screened or tested in the perspective of the 'Roll-Back Malaria' programme, more attention must be given to longitudinal studies of this type.  相似文献   

11.
Abstract In Manarintsoa, near Antananarivo, Madagascar, two groups of patients were defined in terms of malaria clinical immune status: Group MA+ consisted of 36 patients who suffered from between one to four malaria attacks (MA) during the 20-week study, and Group MA who comprised of 48 persons who did not have any malaria attacks during this time. In group MA+, IgM and IgG antibody levels to Plasmodium falciparum exoantigens (E-Ag) were inversely related to the number of malaria attacks. The level of IgM antibodies were significantly higher in group MA+. In contrast, IgG, IgG1, IgG2, IgG3 and IgG4 antibodies to E-Ag were significantly higher in group MA. The level of IgG1 antibodies was inversely correlated, and IgG2 antibodies were positively correlated to the number of malaria attacks.  相似文献   

12.
The immune effector response to Plasmodium falciparum infection involves a finely-tuned interplay between different cell types and cytokines. However, the processes by which they mediate the development of clinical immunity, in areas of different endemicity, are poorly understood. We analyzed circulating levels of pro-inflammatory (TNF, IFN-γ, IL-12, IL-16) and anti-inflammatory (IL-4, IL-10, IL-13) cytokines in control and patient groups drawn from a P. falciparum-endemic and a non-endemic region of India. The endemic region control population exhibited a lower pro- to anti-inflammatory cytokine ratio, indicating a shift towards a high basal Th2 response. Levels of IL-10 contributed most towards the region-specific difference in basal cytokine response. IL-10 was also the strongest predictor of disease in the endemic region, while IL-12, along with IL-10 and IL-6, contributed most to disease outcome in the non-endemic region. A low, mean IFN-γ/IL-10 ratio was associated with disease severity in the endemic region (p < 0.0001). In contrast, a low mean IL-12/IL-10 ratio correlated with disease outcome in the non-endemic region (p < 0.0001). In the endemic region, IL-13 correlated negatively with IFN-γ in severe patients (Spearman's ρ: -0.49; p : 0.013), while in the non-endemic region, IL-13 correlated negatively with IL-6 in severe malaria patients (Spearman's ρ: -0.485; p : 0.001). In conclusion, levels of pro- and anti-inflammatory cytokines and the relative balance between the Th1 and Th2 response, illustrates how populations residing in areas of varying disease endemicity may respond to P. falciparum-induced immune challenge.  相似文献   

13.
Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible causes and implications.  相似文献   

14.
Available evidence suggests that immune cells from neonates born to mothers with placental Plasmodium falciparum (Pf) infection are sensitized to parasite Ag in utero but have reduced ability to generate protective Th1 responses. In this study, we detected Pf Ag-specific IFN-gamma(+) T cells in cord blood from human neonates whose mothers had received treatment for malaria or who had active placental Pf infection at delivery, with responses being significantly reduced in the latter group. Active placental malaria at delivery was also associated with reduced expression of monocyte MHC class I and II in vivo and following short term in vitro coculture with Pf Ag compared with levels seen in neonates whose mothers had received treatment during pregnancy. Given that APC activation and Th1 responses are driven in part by IFN-gamma and down-regulated by IL-10, we examined the role of these cytokines in modulating the Pf Ag-specific immune responses in cord blood samples. Exogenous recombinant human IFN-gamma and neutralizing anti-human IL-10 enhanced T cell IFN-gamma production, whereas recombinant human IFN-gamma also restored MHC class I and II expression on monocytes from cord blood mononuclear cells cocultured with Pf Ag. Accordingly, active placental malaria at delivery was associated with increased frequencies of Pf Ag-specific IL-10(+)CD4(+) T cells in cord blood mononuclear cell cultures from these neonates. Generation and maintenance of IL-10(+) T cells in utero may thus contribute to suppression of APC function and Pf Ag-induced Th1 responses in newborns born to mothers with placental malaria at delivery, which may increase susceptibility to infection later in life.  相似文献   

15.
Cord blood T cells have been reported to respond to a variety of exogenous Ags, including environmental allergens and various viruses and parasites, as demonstrated by enhanced proliferation and cytokine secretion. This finding is evidence that Ags in the maternal environment transplacentally prime and result in fetal development of memory T cells. Some studies suggest these neonatal T cell responses may arise by nonspecific activation of T cells that express TCRs with low binding affinity, thus lacking fine lymphocyte specificity. To address this question, we examined malaria Ag stimulation of human cord and adult blood mononuclear cells in samples from residents of a malaria endemic area in Kenya. We constructed overlapping 18-mer peptides derived from sequences contained in dimorphic alleles of the C-terminal 33-kDa fragment of Plasmodium falciparum merozoite protein 1. This study identified a dominant T cell epitope for one MSP1(33) allele (MAD20) and two T cell epitopes for the second allele (K1); these epitopes were nonoverlapping and allele specific. In a given donor, peptide-specific proliferation and IFN-gamma secretion were highly concordant. However, IL-10 and IL-13 secretion were not correlated. Importantly, the fine specificity of lymphocyte proliferation and cytokine secretion in cord and adult blood mononuclear cells was similar. Cord blood cells obtained from malaria-infected pregnant women were 4-fold more likely to acquire a peptide-specific immune response. We conclude that the fetal malaria response functions in a fully adaptive manner and that this response may serve to help protect the infant from severe malaria during infancy.  相似文献   

16.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

17.
Plasmodium falciparum infection during pregnancy can lead to the transplacental passage of malarial Ags that are capable of inducing acquired immune responses in the fetus. Studies have identified cytokines produced by malaria-specific cord blood (CB) T cells, but information on fetal B cells is limited. Thus, CB mononuclear cells from 120 Cameroonian newborns were cultured for 7 days in vitro and supernatants were assessed by ELISA for Abs to an extract of malarial schizonts (MA), recombinant apical merozoite Ag 1 (AMA-1), the 42-kDa C-terminal region of merozoite surface protein 1 (MSP-1(42)), a B epitope of ring-infected erythrocyte surface Ag (RESA), and the dominant B epitope of the circumsporozoite protein (CSP). Only 12% of supernatants contained IgM to MA but 78% had IgG to one or more malarial Ags, with 53% having IgG to AMA-1, 38% to MSP-1(42), 3% to RESA, and 0% to CSP. The Abs to AMA-1 and MSP-1(42) were predominantly IgG1 and IgG3. CB mononuclear cells were also tested for the ability to secrete cytokines in response to MA and a pool of conserved MSP-1 T cell epitopes. Among the Ag-reactive samples, 39.3% produced only Th2-type cytokines, whereas 60.6% produced a combination of Th1- and Th2-type cytokines. Although a Th2 bias was observed, the in utero cytokine environment was adequate to support isotype switching to cytophilic IgGs, the isotypes that are protective in adults. Because many infants living in a low transmission area are born with malaria-specific B and T cells, the influence of in utero priming on neonatal immunity merits further investigation.  相似文献   

18.
We have cloned and sequenced the gene encoding the circumsporozoite (CS) protein of Plasmodium reichenowi a Plasmodium falciparum-like malaria parasite of chimpanzees. Comparison of the two CS proteins reveals both similarities and differences in these two evolutionarily related parasites that have adapted to different hosts. The P. reichenowi CS protein has a new repeat sequence, NVNP, in addition to the P. falciparum-like NANP and NVDP repeats. In the immunodominant TH2R and TH3R regions of the CS protein, the amino acid sequences are similar in both parasite proteins. The differences in the two proteins exist in domains around the conserved regions, Region I and Region II, which are otherwise conserved in the CS proteins of P. falciparum analyzed to date. Studies of parasite protein genes of evolutionarily related malaria parasites, together with other immunologic and biologic characteristics, will help better understand the evolution and host parasite relationship of malaria parasites and may provide a tool for identifying protein determinants for malaria vaccine development.  相似文献   

19.
RIFIN proteins belong to the largest Plasmodium falciparum multicopy family of variant surface antigens (VSA) expressed by infected erythrocytes. VSA antibodies have been shown to be associated with protection against malaria. Here, antibody subclass responses to a recombinant RIFIN protein (RIF-29) in 116 Ghanaian children were determined by ELISA to investigate the relationship between severe malaria and anti-RIF-29 antibodies. The study group was composed of 23 children diagnosed exclusively for cerebral malaria and 35 children who had non-cerebral severe malaria. The remaining 58 individuals were age-, gender- and area-matched asymptomatic controls. The finding that IgG1 and IgG3 responses predominated in severe malaria patients compared to matched controls suggests that these antibodies are not protective, but are most probably induced by a current infection, an observation substantiated by the equally high reactivity to both recombinant RIF-29 protein and to P. falciparum crude lysate proteins. The exclusive detection of IgG2 and IgG4 antibodies to RIF-29 protein only in cerebral malaria children brings to mind the possibility that these antibodies are pathogenic. This is a new finding that may go some way towards explaining why these children are at risk of developing the life-threatening form of cerebral malaria.  相似文献   

20.

Background

In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.

Methods and Findings

We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite''s cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.

Conclusions

Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant''s contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号