首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Similar to nitric oxide synthase (NOS) cytochrome P450 isoforms (e.g. 3A and 4E) can produce nitric oxide from arginine. Although the active site of both proteins contains a protoporphyrin IX unit having an axial cystein ligand, their effectiveness in the synthesis of NO differs significantly. Now the molecular basis of this functional difference was investigated. A homology model for cytochrome P450 3A4 was refined and compared to the X-ray structure of iNOS. We found the active site of iNOS to be more readily accessible for the substrate than that of P450. Docking calculations were performed using the Monte Carlo conformational analysis technique on all internal and external degrees of freedom of arginine and active site residues as well. The lowest energy conformation of the cytochrome P450 3A4-substrate complex was compared to the high resolution X-ray structure of the iNOS-arginine complex. Comparison of substrate orientations revealed that arginine binds in a similar conformation in both enzymes. In contrast to iNOS we found, however, that in P450 partially negative propionate side chains of protoporphyrin IX are located on the opposite side of the heme plane. As a result of this and the absence of other negatively charged residues the distal (substrate binding) side of P450 should be less negative than that of NOS and therefore its affinity toward the partially positive arginine is reduced. Comparison of molecular electrostatic potentials calculated within the active site of the proteins supports this proposal. Reduced affinity in combination with limited substrate access might be responsible for the less effective NO synthesis of cytochrome P450 observed experimentally.  相似文献   

2.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

3.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

4.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

5.
Nitric oxide and nitric oxide synthase activity in plants   总被引:26,自引:0,他引:26  
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.  相似文献   

6.
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.  相似文献   

7.
The sequences of nitric-oxide synthase flavin domains closely resemble that of NADPH-cytochrome P450 reductase (CPR). However, all nitric-oxide synthase (NOS) isoforms are 20-40 residues longer in the C terminus, forming a "tail" that is absent in CPR. To investigate its function, we removed the 33 and 42 residue C termini from neuronal NOS (nNOS) and endothelial NOS (eNOS), respectively. Both truncated enzymes exhibited cytochrome c reductase activities without calmodulin that were 7-21-fold higher than the nontruncated forms. With calmodulin, the truncated and wild-type enzymes reduced cytochrome c at approximately equal rates. Therefore, calmodulin functioned as a nonessential activator of the wild-type enzymes and a partial noncompetitive inhibitor of the truncated mutants. Truncated nNOS and eNOS plus calmodulin catalyzed NO formation at rates that were 45 and 33%, respectively, those of their intact forms. Without calmodulin, truncated nNOS and eNOS synthesized NO at rates 14 and 20%, respectively, those with calmodulin. By using stopped-flow spectrophotometry, we demonstrated that electron transfer into and between the two flavins is faster in the absence of the C terminus. Although both CPR and intact NOS can exist in a stable, one-electron-reduced semiquinone form, neither of the truncated enzymes do so. We propose negative modulation of FAD-FMN interaction by the C termini of both constitutive NOSs.  相似文献   

8.
Nitric oxide synthase is a cytochrome P-450 type hemoprotein.   总被引:35,自引:0,他引:35  
K A White  M A Marletta 《Biochemistry》1992,31(29):6627-6631
Nitric oxide has emerged as an important mammalian metabolic intermediate involved in critical physiological functions such as vasodilation, neuronal transmission, and cytostasis. Nitric oxide synthase (NOS) catalyzes the five-electron oxidation of L-arginine to citrulline and nitric oxide. Cosubstrates for the reaction include molecular oxygen and NADPH. In addition, there is a requirement for tetrahydrobiopterin. NOS also contains the coenzymes FAD and FMN and demonstrates significant amino acid sequence homology to NADPH-cytochrome P-450 reductase. Herein we report the identification of the inducible macrophage NOS as a cytochrome P-450 type hemoprotein. The pyridine hemochrome assay showed that the NOS contained a bound protoporphyrin IX heme. The reduced carbon monoxide binding spectrum shows an absorption maximum at 447 nm indicative of a cytochrome P-450 hemoprotein. A mixture of carbon monoxide and oxygen (80%/20%) potently inhibited the reaction (73-79%), showing that the heme functions directly in the oxidative conversion of L-arginine to nitric oxide and citrulline. Additionally, partially purified NOS from rat cerebellum was inhibited by CO, suggesting that this isoform may also contain a P-450-type heme. NOS is the first example of a soluble cytochrome P-450 in eukaryotes. In addition, the presence of FAD and FMN indicates that this is the first catalytically self-sufficient mammalian P-450 enzyme, containing both a reductase and a heme domain on the same polypeptide.  相似文献   

9.
Nitric oxide synthase (EC 1.14.13.39; NOS) converts L-arginine into NO and L-citrulline in a two-step reaction with Nomega-hydroxy-L-arginine (NOHLA) as an intermediate. The active site iron in NOS has thiolate axial heme-iron ligation as found in the related monooxygenase cytochrome P450. In NOS, tetrahydrobiopterin (BH4) is an essential cofactor for both steps, but its function is controversial. Previous optical studies of the reaction between reduced NOS with O2 at -30 degrees C suggested that BH4 may serve as an one-electron donor in the first cycle, implying formation of a trihydrobiopterin radical. We investigated the same reaction under identical conditions with electron paramagnetic resonance spectroscopy. With BH4-containing full-length neuronal NOS we obtained an organic free radical (g-value 2.0042) in the presence of Arg, and a similar radical was observed with the endothelial NOS oxygenase domain in the presence of Arg and BH4. Without substrate the radical yield was greatly (10x) diminished. Without BH4, or with NOHLA instead of Arg, no radical was observed. With 6-methyltetrahydropterin or 5-methyl-BH4 instead of BH4, radicals with somewhat different spectra were formed. On the basis of simulations we assign the signals to trihydropterin radical cations protonated at N5. This is the first study that demonstrates the formation of a protonated trihydrobiopterin radical with the constitutive isoforms of NOS, and the first time the radical was obtained without exogenous BH4. These results offer strong support for redox cycling of BH4 in the first reaction cycle of NOS catalysis (BH4 <--> BH3.H+).  相似文献   

10.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

11.
There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.  相似文献   

12.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine coronary microcirculation was studied in vivo (beating heart preparation) and in vitro (isolated microvessels). Nitric oxide synthase (NOS) (N(omega)-nitro-L-arginine, 100 microM) and cyclooxygenase (indomethacin, 10 microM) or cytochrome P-450 (clotrimazole, 2 microM) inhibition did not alter AA-induced dilation. However, when a Ca(2+)-activated K(+) channel channel or cytochrome P-450 antagonist was used in combination with NOS and cyclooxygenase inhibitors, AA-induced dilation was attenuated. We also show a negative feedback by NO on NOS-cyclooxygenase-resistant AA-induced dilation. We conclude that AA-induced dilation is attenuated by cytochrome P-450 inhibitors, but only when combined with inhibitors of cyclooxygenase and NOS. Therefore, redundant pathways appear to mediate the AA response in the canine coronary microcirculation.  相似文献   

13.
The sequences of nitric-oxide synthase (NOS) flavin domains closely resemble that of NADPH-cytochrome P450 reductase (CPR), with the exception of a few regions. One such region is the C terminus; all NOS isoforms are 20-40 amino acids longer than CPR, forming a "tail" that is absent in CPR. To investigate its function, we removed the 21-amino acid C-terminal tail from murine macrophage inducible NOS (iNOS) holoenzyme and from a flavin domain construct. Both the truncated holoenzyme and reductase domain exhibited cytochrome c reductase activities that were 7-10-fold higher than the nontruncated forms. The truncated holoenzyme catalyzed NO formation approximately 20% faster than the intact form. Using stopped-flow spectrophotometry, we demonstrated that electron transfer into and between the two flavins and from the flavin to the heme domain is 2-5-fold faster in the absence of the C-terminal tail. The heme-nitrosyl complex, formed in all NOS isoforms during NO catalysis, is 5-fold less stable in truncated iNOS. Although both CPR and intact NOS can exist in a stable, one electron-reduced semiquinone form, neither the truncated holoenzyme nor the truncated flavin domain demonstrate such a form. We propose that this C-terminal tail curls back to interact with the flavin domain in such a way as to modulate the interaction between the two flavin moieties.  相似文献   

14.
NO synthase (NOS) catalyzes the oxidation of L-arginine to L-citrulline and nitric oxide (NO) or a NO-releasing compound. At least three isoforms of NOS exist (types I-III). The activities of the type I isoform purified from brain and the type III isoform purified from endothelial cells are regulated by the intracellular free calcium concentration ([Ca2+]i) and the Ca(2+)-binding protein calmodulin. At resting [Ca2+]i, both isozymes are inactive; they become fully active at [Ca2+]i greater than or equal to 500 nM Ca2+. Longer lasting increases in [Ca2+]i may downregulate NO formation, for in vitro phosphorylation by Ca2+/calmodulin protein kinase II decreases the Vmax of NOS. Besides the conversion of L-arginine, type I NOS, Ca2+/calmodulin dependently, generates H2O2 and reduces cytochrome c/P450. Other redox activities, i.e. the reduction of nitroblue tetrazolium to diformazan (NADPH-diaphorase) or of quinoid-dihydrobiopterin to tetrahydrobiopterin, by NOS appear to be Ca2+/calmodulin-independent.  相似文献   

15.
The vital signalling molecule NO is produced by mammalian NOS (nitric oxide synthase) enzymes in two steps. L-arginine is converted into NOHA (Nω-hydroxy-L-arginine), which is converted into NO and citrulline. Both steps are thought to proceed via similar mechanisms in which the cofactor BH4 (tetrahydrobiopterin) activates dioxygen at the haem site by electron transfer. The subsequent events are poorly understood due to the lack of stable intermediates. By analogy with cytochrome P450, a haem-iron oxo species may be formed, or direct reaction between a haem-peroxy intermediate and substrate may occur. The two steps may also occur via different mechanisms. In the present paper we analyse the two reaction steps using the G586S mutant of nNOS (neuronal NOS), which introduces an additional hydrogen bond in the active site and provides an additional proton source. In the mutant enzyme, BH4 activates dioxygen as in the wild-type enzyme, but an interesting intermediate haem species is then observed. This may be a stabilized form of the active oxygenating species. The mutant is able to perform step 2 (reaction with NOHA), but not step 1 (with L-arginine) indicating that the extra hydrogen bond enables it to discriminate between the two mono-oxygenation steps. This implies that the two steps follow different chemical mechanisms.  相似文献   

16.
Takashi Iyanagi 《BBA》2019,1860(3):233-258
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H?→?flavin?→?one-electron carrier?→?metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.  相似文献   

17.
The various types of redox partner interactions employed in cytochrome P450 systems are described. The similarities and differences between the redox components in the major categories of P450 systems present in bacteria, mitochondria and microsomes are discussed in the light of the accumulated evidence from X-ray crystallographic and NMR spectroscopic determinations. Molecular modeling of the interactions between the redox components in various P450 mono-oxygenase systems is proposed on the basis of structural and mutagenesis information, together with experimental findings based on chemical modification of key residues likely to be associated with complementary binding sites on certain typical P450 isoforms and their respective redox partners.  相似文献   

18.
The kinetics of NADPH-dependent reduction of cytochrome P450 LM2 in the soluble monomeric reconstituted system in the absence of any substrate is shown to be monophasic. We show that ferrous cytochrome c acts as a competitive inhibitor of the reduction. In the presence of 1 mM benzphetamine an additional extremely fast phase was observed. Under these conditions ferrous cytochrome c was found to be a competitive inhibitor of the slow phase of the reduction process, which accounted for 80% of the total reduction amplitude. Inhibition experiments yield a dissociation constant for the LM2-reductase complex of 3.0 +/- 1.5 microM. This constant was the same both in the presence and in the absence of benzphetamine. Based on these data we conclude that cytochromes P450 and c bind to the same center on the NADPH-cytochrome P450 reductase molecule. Comparative analysis of the amino acid sequences reveals a detectable similarity between cytochrome c and cytochrome P450 LM2 at positions 68-87 and 121-145, respectively. In addition, a substantial similarity was shown for sequence fragments 204-224 of NADPH-cytochrome P450 reductase and 40-60 of cytochrome b5. Based on these findings a hypothesis for the location of the centers of intermolecular interactions on the molecules of cytochrome P450 LM2 and NADPH-cytochrome P450 reductase is proposed.  相似文献   

19.
Early stages of rat thymocyte apoptosis measured as annexin-V positive events and induced by methylprednisolone (MPS), etoposide, and thapsigargin, showed a sequential increase in nitric oxide (NO) production by mitochondrial and endoplasmic reticulum membranes. Thapsigargin induced the highest NO production, a sevenfold increase as compared with untreated thymocytes, in mitochondrial and microsomal membranes. MPS and etoposide were equally effective in increasing NO production by mitochondrial membranes by a factor of 4-5, with only a slight increase in NO production by endoplasmic reticulum membranes. Western blot analysis of both types of membrane indicated that a nitric oxide synthase (NOS) isoenzyme is present in mitochondrial membranes and reacts with antibodies to i-NOS (type II), while reactivity to antibodies to e-NOS (type III) was restricted to endoplasmic reticulum. The participation of endoplasmic reticulum during apoptosis was further determined by alterations in UDP-Glucosyltransferase (UDP-GT) and NADPH cytochrome P450 reductase. Increased UDP-GT activity was observed after thapsigargin treatment, and no changes were found after treatment with etoposide or MPS. NADPH cytochrome P450 reductase activity markedly decreased during apoptosis, being stronger after thapsigargin treatment. The latest stage of the apoptotic process was measured by caspase activities. Caspase 3 activity was markedly increased by the three apoptosis inducers; caspase 6 was only activated by MPS and etoposide, while caspase 8 was not activated by any of these inducers. It is clear that mitochondria and endoplasmic reticulum are involved in thapsigargin induced thymocyte apoptosis. Meanwhile, other thymocyte apoptotic pathways, such as those induced by MPS or etoposide, seem to centrally involve mitochondria but not endoplasmic reticulum.  相似文献   

20.
Ketoximes undergo a cytochrome P450-catalyzed oxidation to nitric oxide and ketones in liver microsomes. In addition, nitric oxide synthase (NOS) can catalyze the oxidative denitration of the >C=N-OH group of amidoximes. The objective of this work was to characterize the oxidation of a ketoxime (acetoxime) and to assess the ability of NOS to catalyze the generation of nitric oxide/nitrogen monoxide (*NO) from acetoxime. Acetoxime was oxidized to NO2- (and NO3-) by microsomes enriched with several P450 isoforms, including CYP2E1, CYP1A1, and CYP2B1. Nitric oxide was identified as an intermediate in the overall reaction. Superoxide dismutase and catalase significantly inhibited the reaction. Exogenous iron increased the microsomal generation of NO2- from acetoxime, while metal chelators (desferrioxamine, EDTA, DTPA) inhibited it. A Fenton-like system (Fe2+ plus H2O2, pH 7.4) consumed acetoxime with production of NO2- and NO3-, whereas oxidation by superoxide or by H2O2 was inefficient. The results presented suggest a role for hydroxyl radical-like oxidants in the oxidation of acetoxime to nitric oxide. O-Acetylacetoxime and O-tert-butylacetoxime were not oxidized by a Fenton system or by liver microsomes to any significant extent. Formation of the 5,5'-dimethyl-1-pyrroline-N-oxide/. OH adduct by a Fenton system was significantly inhibited by acetoxime, while O-acetylacetoxime and O-tert-butylacetoxime were inactive. These results suggest that the. OH-dependent oxidation of acetoxime initially proceeds via abstraction of a hydrogen atom from its hydroxyl group, as opposed to the oxidation of its >C=N- function. HepG2 cells with low levels of expression of P450 did not significantly produce NO2- from acetoxime, while HepG2 cells expressing CYP2E1 did, and this generation was blocked by a CYP2E1 inhibitor. Acetoxime was inactive either as a substrate or as an inhibitor of iNOS activity. These results indicate that reactive oxygen species play a key role in the oxidation of acetoxime to. NO by liver microsomes by a mechanism involving H abstraction from the OH moiety by hydroxyl radical-like oxidants and suggest the possibility that acetoxime may be an effective producer of. NO primarily in the liver by a pathway independent of NOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号