首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. It has recently been postulated that disturbances in glutamatergic neurotransmission may contribute to the pathophysiology of schizophrenia. Therefore the aim of the present study was to evaluate the role of glutamate NMDA and group II metabotropic receptors in the antipsychotic drug action. To this aim the influence of some well-known neuroleptics on cortical NMDA receptors was examined. Furthermore, their behavioral effects were compared with those of the novel agonist of group II glutamate metabotropic receptors, LY 354740, in some animal models of schizophrenic deficits. We found that long-term administration of the typical neuroleptic haloperidol and the atypical one clozapine increased the number of NMDA receptors labelled with [3H]CGP 39653 in different cortical areas. Long-, but not short-term, treatment with haloperidol and raclopride diminished the deficit of prepulse inhibition produced by phencyclidine, which is a model of sensorimotor gating deficit in schizophrenia. In contrast, neither short- nor long-term treatment with clozapine influenced the phencyclidine effect in that model. Acute treatment with LY 354740 reversed neither (1) the deficit of prepulse inhibition produced by phencyclidine or apomorphine, nor (2) the impairment in a delayed alternation task induced by MK-801, which is commonly used to model the frontal lobe deficits associated with schizophrenia. The present study suggests that an increase in the density of cortical NMDA receptors may be important to a longterm neuroleptic therapy. Conversely, the results do not support the role of group II metabotropic glutamate receptors in the antipsychotic drug action. Received August 31, 1999 Accepted September 20, 1999  相似文献   

2.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

3.
H N Bhargava 《Life sciences》1984,34(9):873-879
Chronic intragastric administration of haloperidol (1.5 mg/kg/day) for 21 days followed by a 3-day withdrawal period resulted in the development of enhanced locomotor activity response to apomorphine, and an increase in the number of binding sites for 3H-spiroperidol in the striatal membranes of the rat brain. Subcutaneous administration of Pro-Leu-Gly-NH2 or cyclo(Leu-Gly) in doses of 2 mg/kg/day given for 3-days after termination of haloperidol treatment inhibited the enhanced response to apomorphine, as well as the increases in the number of 3H-spiroperidol binding sites in the striatum. If indeed, the supersensitivity of striatal dopamine receptors is one of the mechanisms in the development of tardive dyskinesia symptoms, the present results suggest that the above peptides may be helpful in ameliorating some of the symptoms of tardive dyskinesia induced by neuroleptic drugs.  相似文献   

4.
It has been demonstrated in experiments on rats receiving chronic (16 days) treatment with haloperidol (1.0 mg/kg/day), sulpiride (50 mg/kg/day) and clozapine (10 mg/kg/day) that binding of 3H-flunitrazepam in the striatum, limbic system, and cortex is reduced at the 5th day after withdrawal of the neuroleptics. That release was determined by the diminution of the number of receptors without changing in the dissociation constant. The reduction in the density of benzodiazepine receptors (BD-receptors) after withdrawal of the neuroleptics attests to their agonistic effect on BD-receptors. Apparently these changes are not linked with a direct effect of the neuroleptics on BD-receptors, since they displace 3H-flunitrazepam in experiments in vitro only at micromolar concentrations. It is assumed that the reduction in 3H-flunitrazepam binding is mediated via the GABAergic system transsynaptically in response to increase in the number of dopamine (neuroleptic) receptors.  相似文献   

5.
Chronic treatment with haloperidol is associated with complete tolerance to the decreasing effect of the neuroleptic on cerebellar cGMP content, vice versa chronic haloperidol causes hypersensitivity to the enhancing effect of apomorphine on cerebellar cGMP. Thus, the administration of 0.5 mg/Kg of haloperidol decreases cerebellar cGMP by 80% in control rats but fails to alter this nucleotide in rats chronically treated with haloperidol (0.5 mg/Kg twice daily for 20 days). A dose of 0.5 mg/Kg of apomorphine enhances cGMP by approximately 25 and 60 percent in control rats and in rats chronically treated with haloperidol, respectively. The results suggest that: a) There is a functional link between striatum and cerebellum; b) Cerebellar cGMP is a sensitive index of the state of activation of striatal dopamine receptors.  相似文献   

6.
7.
Male Wistar rats were treated chronically with either carbidine (10 mg/kg/day) or haloperidol (1 mg/kg/day) for 23 consecutive days. On days 4-5 after the treatment discontinuation the animals were challenged with apomorphine HCl (0.5 mg/kg) or 5-OTP (150 mg/kg i. p) in combination with pargiline (40 mg/kg i. p) and stereotype responses were scored. In carbidine-treated rats the intensity of stereotype sniffings was increased after apomorphine treatment. In contrast, animals treated with haloperidol exhibited more intensive gnawing after apomorphine in comparison to vehicle-treated rats. 5-OTP-induced head twitches were increased only in carbidine-treated rats. Prolonged carbidine treatment in contrast to haloperidol induced a decrease in 5H-spiperone and 3H-LSD binding in the frontal cortex, with the density of D-2 receptors in the striatum practically unchanged. It is concluded that neuroleptic carbidine in contrast to classical neuroleptics has a more selective effect in serotonin (S-2) receptors and antidepressive properties of this compound may be due to the down-regulation of S-2 receptors in the brain.  相似文献   

8.
Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.  相似文献   

9.
H Ujike  A Kanzaki  K Okumura  K Akiyama  S Otsuki 《Life sciences》1992,50(16):PL129-PL134
We have demonstrated for the first time that the sigma antagonist BMY 14802 prevents the development of behavioral sensitization induced by repeated administration of methamphetamine. Rats received an intraperitoneal injection of 15 or 30 mg/kg BMY 14802 followed by 2 mg/kg methamphetamine 30 min later. Unlike dopamine antagonists, BMY 14802 did not induce major changes in the acute motor effects of 2 mg/kg methamphetamine. Repeated administration of methamphetamine induced progressive augmentation of stereotyped behaviors and resulted in behavioral sensitization. However, repeated administration of methamphetamine in combination with BMY 14802 at either dose produced no increase in the intensity of stereotypy when compared with the first treatment. After a 7-day abstinence period, a challenge test with methamphetamine alone revealed supersensitivity of methamphetamine-sensitized rats to subsequent methamphetamine, whereas rats pretreated with repeated methamphetamine in combination with BMY 14802 exhibited no difference in the intensity of stereotypy from rats pretreated with repeated saline. These results suggest that sigma receptors play a crucial role in the induction of methamphetamine-induced sensitization.  相似文献   

10.
The effects of 1) the phencyclidine receptor ligand TCP, 2) sigma receptor ligands (+)3-PPP and DTG, and 3) N-methyl-D-aspartate receptor blockers MK-801 and dextrorphan were determined on a brainstem mechanism which controls the termination of the inspiratory phase of the breathing cycle. Inspiratory bursts were recorded from the phrenic nerve in decerebrate paralyzed cats ventilated by means of a phrenic driven servoventilator. The central mechanism which terminates inspiration was tested by withholding lung inflation, thus suppressing the contribution of the vagal feedback from the lungs to inspiratory termination. TCP increased the duration of test inspiration (tTi) by 17% at 0.03 mg/kg and by 14-fold (from 1.6 to 23 s) at 1 mg/kg. With dextrorphan, tTi was significantly increased at 3 mg/kg. In contrast, (+)3-PPP and DTG did not increase tTi at doses up to 10 mg/kg, although MK-801 (0.03 mg/kg), given after the sigma ligands, increased tTi by 59-90%. It is concluded that phencyclidine but not sigma receptor ligands block the central mechanism which terminates inspiration and that the likely site of action is the NMDA receptor complex.  相似文献   

11.
Neuroleptics and Dopamine Transporters   总被引:2,自引:0,他引:2  
The effects of neuroleptic treatments on dopamine transporters and on dopamine receptors was investigated in the forebrain of adult rats treated for 21 days with either haloperidol, clozapine or saline. The dopamine D1receptors, labeled with [3H]SCH23390, increased in nucleus accumbens, latero-dorsal rostral neostriatum and substantia nigra, after clozapine but not haloperidol. The dopamine D2receptors, studied with [3H]raclopride, increased in nucleus accumbens and in dorsolateral, ventro-medial and dorso-medial quadrants of the rostral neostriatum after either haloperidol or clozapine treatments, and also in latero-ventral rostral neostriatum but only after haloperidol. Haloperidol also up-regulated D2receptors in rostral and caudal neostriatum, but clozapine produced a more uneven increase, especially in caudal neostriatum. In contrast, the densities of dopamine uptake sites, or transporters, labeled with [I25I]RTI-121, remained unchanged after both neuroleptic treatments. The observation that dopamine transporters are resistant to treatments that modify D1and D2receptors indicates that these uptake sites can probably be ruled out as the target of neuroleptic drugs, and that dopamine receptor up-regulations can indeed occur independently of the densities of nerve endings at the terminal fields of innervation.  相似文献   

12.
A blockade of the dopaminergic D1/D2 receptors by systemic administration of haloperidol (0.05-0.5 mg/kg) produced a dose-dependent increase in inhibition of conditioned alimentary behavior in cats under conditions of choice between a valuable delayed reward and a less valuable immediate reward. Administration of haloperidol produced a progressive decrease in the number of effective instrumental reactions, but did not affect the choice between short- and long-latency reactions and their mean latencies. The data obtained do not support a hypothesis that the blockade of dopaminergic receptors shifts behavior towards impulsive reactions. The reasons why the results do not support the hypothesis are discussed.  相似文献   

13.
It has been established in experiments on male mice and rats that caerulein antagonized the behavioural effects of ketamine, an agonist of phencyclidine receptors. Caerulein (75-375 micrograms/kg) and haloperidol (0.1-1.5 mg/kg) suppressed the stereotyped behaviour and motor excitation induced by ketamine (30 mg/kg) in mice. Caerulein and haloperidol failed to affect ketamine-induced ataxia. Caerulein (10 micrograms/kg) and the opioid antagonist naloxone (5 mg/kg) completely blocked the amnestic action of ketamine (30 mg/kg) in passive avoidance experiments on rats. It seems likely that the suppression of the behavioural effects of ketamine by caerulein is related to its functional antagonism with dopamine and opioid receptors.  相似文献   

14.
An important goal of current neuroleptic research is to develop antipsychotic compounds with the low incidence of extrapyramidal side effects. The therapeutic success and less side-effect of atypical anti-psychotics such as clozapine and risperidone has focused the attention on the role of receptor systems other than dopaminergic system in the pathophysiology of neuroleptics-associated extrapyramidal side effects. The present study compares the effect of chronic administration of typical and atypical antipsychotics on neurochemical profile in rat forebrain. The study was planned to study changes in extracellular levels of norepinephrine, dopamine and serotonin in forebrain region of brain and tried to correlate them with hyperkinetic motor activities (vacuous chewing movements (VCM's), tongue protrusions and facial jerking) in rats, hall mark of chronic extrapyramidal side-effect of neuroleptic therapy tardive dyskinesia. Chronic administration of haloperidol (1 mg/kg) and chlorpromazine (5 mg/kg) resulted in significant increase in orofacial hyperkinetic movements where as clozapine and risperidone showed less significant increase in orofacial hyperkinetic movements as compared to control. There were also significant decrease in the extracellular levels of neurotransmitters dopamine, norepinephrine and serotonin in fore-brain as measured by HPLC/ED after chronic administration of haloperidol and chlorpromazine. Chronic administration of atypical neuroleptics clozapine and risperidone resulted in the decrease in extracellular concentration of dopamine and norepinephrine but the effect was less significant as compared to typical drugs. However, treatment with atypical neuroleptics resulted in 3 fold increase in serotonin levels as compared to forebrain of control rats. Typical and atypical neuroleptics showed varying effects on neurotransmitters, especially serotonin which may account for the difference in their profile of side effects (Tardive dyskinesia).  相似文献   

15.
Uchida S  Kato Y  Hirano K  Kagawa Y  Yamada S 《Life sciences》2007,80(17):1635-1640
The present study was conducted to characterize the binding of neurotransmitter receptors (dopamine D(2), serotonin 5-HT(2), histamine H(1), adrenaline alpha(1) and muscarine M(l) receptors) in the rat's brain after the oral administration of haloperidol, risperidone, and olanzapine. Haloperidol at 1 and 3 mg/kg displayed significant activity to bind the D(2) receptor (increase in the Kd value for [(3)H]raclopride binding) in the corpus striatum with little change in the activity toward the 5-HT(2) receptor (binding parameters for [(3)H]ketanserin). In contrast, risperidone (0.1-3 mg/kg) showed roughly 30 times more affinity for the 5-HT(2) receptor than D(2) receptor. Also, olanzapine (1-10 mg/kg) was most active toward the H(1) receptor in the cerebral cortex, corpus striatum, and hippocampus, was less active in binding 5-HT(2) and D(2) receptors, and showed the least affinity for alpha(1) and M(1) receptors. In conclusion, haloperidol and risperidone administered orally selectively bind D(2) and 5-HT(2) receptors, respectively, in the rat brain, while olanzapine binds H(1), 5-HT(2), and D(2) receptors more than alpha(1) and M(1) receptors.  相似文献   

16.
A subcutaneous injection of small and moderate doses (1.6, 3.2, 4.0 and 4.8 mg/kg) of the schizophrenomimetic methamphetamine caused a dose-related increase in the tissue content (the net content) of L-Arg and L-Asn in the neocortex and striatum at 60 min, but not at 360 min, after injection. The methamphetamine-induced (4.8 mg/kg) increases in levels of these amino acids were significantly attenuated by pretreatment with an antipsychotic drug, haloperidol (1 mg/kg) or clozapine (10 mg/kg). In the neocortex, a clozapine-reversible increase in the level of L-Thr was also observed 60 min after methamphetamine administration. Striatal concentrations of L-Glu, L-Ser, LThr, Gly and L-Ala were augmented by the same regimen in a haloperidol- and clozapine-sensitive fashion. A moderate dose of another schizophrenomimetic phencyclidine (7.5 mg/kg) given subcutaneously induced robust abnormal behavior, a diminution in the neocortical and striatal levels of L-Asp and an increase in the striatal L-Ala content without significant effects on the other amino acids studied. These results suggest that neocortical and striatal L-Arg, L-Asn, L-Thr, Gly, L-Ala or L-Ser may be implicated in the psychotomimetic effects of methamphetamine and might display mutual interaction with cerebral dopaminergic transmission. The differential effects of methamphetamine and phencyclidine on the net neocortical and striatal concentrations of various amino acids might, at least in part, underlie the distinct features of psychoses induced by these two drugs.  相似文献   

17.
The experiments on male mice and rats have revealed reversed behavioral effects of muscimol and Ro 15-1788 after 15 days of haloperidol (0.25 mg/kg, twice daily) treatment. Muscimol (0.75 mg/kg), which depressed motor activity in saline-pretreated mice, stimulated it after discontinuation of long-term haloperidol administration. Ro 15-1788 stimulating effect in saline-pretreated rats gave way to sedative effect following haloperidol withdrawal. Simultaneously, the number of 3H-muscimol and 3H-flunitrazepam binding sites was decreased in forebrain, but increased in hindbrain. It was suggested that GABAA and benzodiazepine receptors in forebrain and hindbrain play opposite (inhibiting and stimulating, respectively) functional roles in the regulation of behaviour.  相似文献   

18.
Abstract— Four days after a single dose of teflutixol (5 mg/kg i.p.), at which time mice are superresponsive to dopamine agonists, e.g. apomorphine, the specific binding of [3H]haloperidol, [3H]cis (Z)-flupenthixol, [3H]apomorphine, [3H]dopamine, [3H]propylbenzilylcholine mustard and [3H]GABA to striatal membranes in vitro is equal to that of saline-treated mice. Specific binding of [3H]haloperidol is also unchanged 3 days following a single dose of fluphenazine (5mg/kg i.p.) and 2 days following haloperidol (5 mg/kg i.p.), but slightly decreased 3 days following cis(Z)-flupenthixol (5 mg/kg i.p.).
The possibility that remaining neuroleptic or active metabolites could obscure a slight increase in dopamine receptor binding was rejected, since remaining amounts of [3H]teflutixol in the final binding assay 4 days after intraperitoneal injection of [3H]teflutixol (5 mg/kg) were too small to influence the binding of [3H]haloperidol in vitro .
It is concluded that the pharmacological superresponsiveness and the decrease in dopamine synthesis and release seen after the initial receptor blockade following a single dose of neuroleptic drugs in mice are nor accompanied by changes in dopamine, muscarine or GABAergic receptor characteristics in corpus striatum. The possibility that changes occur in a small number of functional operative dopamine receptors cannot be excluded, however.  相似文献   

19.
Abstract: Subchronic treatment with haloperidol increases the number of asymmetric glutamate synapses associated with a perforated postsynaptic density in the striatum. To characterize these synaptic changes further, the effects of subchronic (28 days) administration of an atypical antipsychotic, clozapine (30 mg/kg, s.c.), or a typical antipsychotic, haloperidol (0.5 mg/kg, s.c.), on the binding of [3H]MK-801 to the NMDA receptor-linked ion channel complex and on the in situ hybridization of riboprobes for NMDAR2A and 2B subunits and splice variants of the NMDAR1 subunit were examined in striatal preparations from rats. The density of striatal glutamate immunogold labeling associated with nerve terminals of all asymmetric synapses and the immunoreactivity of those asymmetric synapses associated with a perforated postsynaptic density were also examined by electron microscopy. Subchronic neuroleptic administration had no effect on [3H]MK-801 binding to striatal membrane preparations. Both drugs increased glutamate immunogold labeling in nerve terminals of all asymmetric synapses, but only haloperidol increased the density of glutamate immunoreactivity within nerve terminals of asymmetric synapses containing a perforated postsynaptic density. Whereas subchronic administration of clozapine, but not haloperidol, resulted in a significant increase in the hybridization of a riboprobe that labels all splice variants of the NMDAR1 subunit, both drugs significantly decreased the abundance of NMDAR1 subunit mRNA containing a 63-base insert. Neither drug altered mRNA for the 2A subunit, but clozapine significantly increased hybridization of a probe for the 2B subunit. The data suggest that some neuroleptic effects may be mediated by glutamatergic systems and that typical and atypical antipsychotics can have varying effects on the density of glutamate in presynaptic terminals and on the expression of specific NMDA receptor splice variant mRNAs. Alternatively, NMDAR1 subunit splice variants may differentially respond to interactions with glutamate.  相似文献   

20.
Rats were treated for one year with either trifluoperazine dihydrochloride (2.5–3.5 mg/kg/day) or thioridazine dihydrochloride (30–40 mg/kg/day) when prolactin levels were measured in comparison to animals treated acutely with a single oral bolus of the same drugs in approximately the same dose. Serum prolactin levels at the end of the year of neuroleptic treatment with either drug remained elevated compared to those in control animals, and the elevation was no different from that obtained by administration of an equivalent acute single oral bolus. In contrast, the inhibition of apomorphine-induced stereotypy produced by the acute administration of either drug disappeared during chronic treatment, to be replaced after a year's neuroleptic administration by a supersensitive response. Similarly, the increase in dopamine turnover produced by acute neuroleptic administration, evidenced by raised striatal 3, 4-dihydroxy-phenylacetic acid (DOPAC) levels, also disappeared at the end of a year's treatment, when specific binding of 3H-spiperone to striatal homogenates indicated an increased number of dopamine receptors. The disappearance of evidence of blockade of striatal dopamine receptors, which appeared to become supersensitive during a year's chronic treatment with either trifluoperazine or thioridazine, contrasts with the persistence of the effect of these drugs on serum prolactin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号