首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H2 photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192 ± 28 and 139 ± 15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with ∼ 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.  相似文献   

2.
Polyclonal antibodies were prepared against the major antenna chlorophyll (Chl) a/b-binding protein from the prokaryote Prochlorothrix hollandica (Burger-Wiersma et al. (1986) Nature (Lond.) 320, 262-264). Immunoblotting experiments on Triton X-114 phase-partitioned P. hollandica thylakoids revealed that the antibody recognizes intrinsic membrane polypeptides of 33 and 30 kDa, and immunocytochemistry of P. hollandica thin sections showed that the antibody preferentially decorates the thylakoid. The antibody was immunopurified against a LacZ fusion protein produced in Escherichia coli by an immunopositive phage clone retrieved from a lambda ZAP expression library. This purified antibody crossreacted to both the 33 and 30 kDa polypeptides, indicating that these proteins are either structurally related products of different genes, or modified forms of the same gene product. Whereas immunological crossreactivity of Prochlorothrix antibody to the major LHC-II Chl a/b antenna of maize could not be detected, the immunopurified antibody reacted strongly to the major 34 kDa Chl a/b antenna protein from the prokaryote Prochloron sp. (Lewin (1975) Phycologia 14, 153-160). These data confirm the structural similarity of the prochlorophyte photosynthetic antenna systems.  相似文献   

3.
Novel aspects of chlorophyll a/b-binding proteins   总被引:5,自引:0,他引:5  
The light-harvesting proteins (LHC) constitute a multigene family including, in higher plants, at least 12 members whose location, within the photosynthetic membrane, relative abundance and putative function appear to be very different. The major light-harvesting complex of photosystem II (LHCII) is the most abundant membrane protein in the biosphere and fulfil a constitutive light-harvesting function for photosystem II while the early light-induced proteins (ELIPs) are expressed in low amounts under stress conditions. Primary sequence analysis suggests that all these proteins share a common structure which was resolved at 3.7 Å resolution by electron crystallography in the case of the major LHCII complex: Three transmembrane helices connected by hydrophilic loops coordinate seven chlorophyll a and five chlorophyll b molecules by histidine, glutamine, asparagine lateral chains as well as by charge compensated ionic pairs of glutamic acid and arginine residues; moreover, at least two xantophyll molecules are located at the centre of the structure in close contact with seven porphyrins, tentatively identified as chlorophyll a. The antenna system is also involved in the regulation of excitation energy transfer to reaction centre II. This function has been attributed to three members of the protein family, namely CP29, CP26 and CP24 (also called minor chlorophyll proteins) which have been recently characterised and shown to bind most of the xantophyll cycle carotenoids, thus suggesting that the non-photochemical quenching mechanism is acting in these proteins. Further support to this assignment comes from the recent identification of protonation sites in CP29 and CP26 by covalent dicyclohexhylcarbodiimide binding suggesting that these respond to low lumenal pH. In addition, CP29 is reversibly phosphorylated under light and cold stress conditions, undergoing conformational change, supporting the hypothesis that these subunits, present in low amounts in photosystem II, have a major regulatory role in the light-harvesting function and are thus important in environmental stress resistance.  相似文献   

4.
Abstract Rhizobium sp. isolated from Lablab purpureus utilized catechol as sole carbon and energy source, a property which is plasmid encoded. The heat curable (39–41°C) plasmid, designated as pAMG1, was transferred to cat strains of Rhizobium sp. with a transfer frequency of 2.6 × 10−6 transconjugants/donor cell.  相似文献   

5.
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids.  相似文献   

6.
The chlorophyll (Chl) a/b proteins of the photosynthetic prokaryotes appear to have evolved by gene duplication and divergence of the core Chl a antenna family, which also includes CP43 and CP47 and the iron-stress induced Chl a-binding IsiA proteins. We show here that Prochlorothrix hollandica has a cluster of three pcb (prochlorophyte chlorophyll b) genes which are co-transcribed. The major antenna polypeptides of 32 and 38 kDa are encoded by pcbA and pcbC respectively. The pcbC gene is significantly divergent from the other two and may have originated by a gene duplication independent of the one that led to isiA and the other prochlorophyte pcb genes. The distant relatedness of the three prochlorophyte genera implies that not only the ability to make Chl b and use it for light-harvesting arose independently in the three lineages, but also that the pcb genes may have arisen as the result of independent gene duplications in each lineage.  相似文献   

7.
In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat (Avena sativa, var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown under low intensity, which indicates that PS II is photoinhibited by such conditions. PS I was more stable than PS II in plants exposed to strong light for a moderate time (five photoperiods) since the oxidised plastoquinone pool size under far-red (FR) light was similar in plants grown under high light intensity to plants grown under low intensity, probably as a result of the cyclic electron flow around PS I being stimulated in response to high light intensity. However, over longer times (10 photoperiods) the PS I was photoinhibited, since the oxidised plastoquinone pool size under FR light increased as a consequence of the decrease in PS I activity caused by high light intensity. This practical is intended for advanced students of plant biochemistry and plant physiology.  相似文献   

8.
Monoclonal antibodies have been raised against the light-harvesting chlorophyll a/b-binding proteins of photosystem I (LHCI) using a photosystem (PS) I preparation (PSI-200) wild-type from barley (Hordeum vulgare L. cv. Svaløf's Bonus) as the antigen. These antibodies cross-reacted with a minor light-harvesting chlorophyll a/b-protein of PSII (Chla/b-P1=CP29), but not with the major one, LHCII (=Chla/b-P2**). Similarly, a monoclonal antibody to Chla/b-P1, elicited by a PSII preparation as the antigen, cross-reacted with LHCI, but not LHCII. This explains why an antigen consisting of LHCII, free of LHCI, but contaminated with Chla/b-P1, can elicit antibodies which cross-react with LHCI. Immunoblot assays showed that LHCI and Chla/b-P1 have at least two epitopes in common. Immunogold labelling of thin-sectioned wild-type thylakoids confirmed a preferential localisation of Chla/b-P1 in grana partition membranes and LHCI in stroma lamellae. The presence of LHCI was demonstrated in barley mutants lacking the PSI reaction centre (viridis-zb 63) and chlorophyll b (chlorina-f2), and was correlated with the presence of long-wavelength (730 nm) fluorescence emission at 77 K. The mutant viridis-k 23, which has a 77 K long-wavelength fluorescence peak at 720 nm, was shown by immune-blot assay to lack LHCI, although Chla/b-P1 was present.Abbreviations Chl-P chlorophyll-protein - CM Carlsberg Monoclonal - Da dalton - LHC light-harvesting complex - PAGE polyacrylamide gel electrophoresis - PSI, II photosystem I, II - PSI-200 PSI containing LHCI polypeptides - SDS sodium dodecyl sulphate  相似文献   

9.
10.
11.
Summary cDNAs encoding three different LHC I polypeptides (Type I, Type II and Type III) from the gymnosperm Scots pine (Pinus sylvestris L.) were isolated and sequenced. Comparisons of the deduced amino acid sequences with the corresponding tomato sequences showed that all three proteins were highly conserved although less so than the LHC II proteins. The similarities between mature Scots pine and tomato Types I, II and III LHC I proteins were 80%, 87% and 85%, respectively. Two of the five His residues that are found in AXXXH sequences, which have been identified as putative chlorophyll ligands in the Type I and Type II proteins, were not conserved. The same two regions of high homology between the different LHC proteins, which have been identified in tomato, were also found in the Scots pine proteins. Within the conserved regions, the Type I and Type II proteins had the highest similarity; however, the Type II and Type III proteins also showed a similarity in the central region. The results suggest that all flowering plants (gymnosperms and angiosperms) probably have the same set of LHC polypeptides. A new nomenclature for the genes encoding LHC polypeptides (formerly cab genes) is proposed. The names lha and lhb are suggested for genes encoding LHC I and LHC II proteins, respectively, analogous to the nomenclature for the genes encoding other photosynthetic proteins.  相似文献   

12.
13.
Solubilization of thylakoid membranes of Cyclotella cryptica with dodecyl-beta maltoside followed by sucrose density gradient centrifugation or deriphate polyacrylamide gel electrophoresis resulted in the isolation of pigment protein complexes. These complexes were characterized by absorption and fluorescence spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western immunoblotting using antisera against fucoxanthin chlorophyll a/c-binding proteins and the reaction center protein D2 of photosystem II. Sucrose density gradient centrifugation yielded four bands. Band 1 consisted of free pigments with minor amounts of fucoxanthin chlorophyll a/c-binding proteins. Bands 2, 3, and 4 represented a major fucoxanthin chlorophyll a/c-binding protein fraction, photosystem II, and photosystem I, respectively. Deriphate polyacrylamide gel electrophoresis gave rise to five bands, representing photosystem I, photosystem II, two fucoxanthin chlorophyll a/c-binding protein complexes, and a band mostly consisting of free pigments. In the Western immunoblotting experiments, the specific association of two fucoxanthin chlorophyll a/c-binding proteins, Fcp2 and Fcp4, to the photosystems could be demonstrated. In vivo experiments using antibodies against phosphothreonine residues and in vitro studies using [gamma-32P]ATP showed that fucoxanthin chlorophyll a/c binding-proteins of 22 kDa became phosphorylated.  相似文献   

14.
15.
Light-harvesting antenna system possesses an inherent property of photoprotection. The single-helix proteins found in cyanobacteria play role in photoprotection and/or pigment metabolism. The photoprotective functions are also manifested by the two- and four-helix proteins. The photoprotection mechanism evolved earlier to the mechanism of light-harvesting of the antenna complex. Here, the light-harvesting complex genes of photosystems I and II from Arabidopsis are enlisted, and almost similar set of genes are identified in rice. Also, the three-helix early light-inducible proteins (ELIPs), two-helix stress-enhanced proteins (SEPs) and one-helix high light-inducible proteins [one-helix proteins (OHPs)] are identified in rice. Interestingly, two independent genomic loci encoding PsbS protein are also identified with implications on additional mode of non-photochemical quenching (NPQ) mechanism in rice. A few additional LHC-related genes are also identified in rice (LOC_Os09g12540, LOC_Os02g03330). This is the first report of identification of light-harvesting complex genes and light-inducible genes in rice.Key words: Lhca and Lhcb proteins, Lhc proteins evolution, light-inducible proteins, protein alignment, PsbSThe light-harvesting proteins are present in different taxa. The proteins of light-harvesting systems from higher plants, cyano-bacteria, purple bacteria and green sulphur bacteria share no sequence similarity however little structural similarity can be seen.1 Apparently, the light-harvesting systems in these different taxa might have evolved independently from each other.1 To enable efficient transfer of excitation energy into the reaction centers, where charge separation takes place, different proteins are recruited in order to coordinate the photosynthetic pigment molecules. The light-harvesting and light dissipation are tightly coupled processes involving the higher plant light-harvesting antenna. Here, genome-wide analysis of the light-harvesting chlorophyll a/b-binding proteins and light-inducible proteins in Arabidopsis thaliana L. and Oryza sativa L. (rice) is conducted. This study wherein genes coding for antenna proteins are identified and named can be used as a nomenclature guide to the light-harvesting complex gene family members and their relatives in rice.  相似文献   

16.
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica .  相似文献   

17.
Monospecific polyclonal antibodies have been raised against synthetic peptides derived from the primary sequences from different plant light-harvesting Chl a/b-binding (LHC) proteins. Together with other monospecific antibodies, these were used to quantify the levels of the 10 different LHC proteins in wild-type and chlorina f2 barley (Hordeum vulgare L.), grown under normal and intermittent light (ImL). Chlorina f2, grown under normal light, lacked Lhcb1 (type I LHC II) and Lhcb6 (CP24) and had reduced amounts of Lhcb2, Lhcb3 (types II and III LHC II), and Lhcb4 (CP 29). Chlorina f2 grown under ImL lacked all LHC proteins, whereas wild-type ImL plants contained Lhcb5 (CP 26) and a small amount of Lhcb2. The chlorina f2 ImL thylakoids were organized in large parallel arrays, but wild-type ImL thylakoids had appressed regions, indicating a possible role for Lhcb5 in grana stacking. Chlorina f2 grown under ImL contained considerable amounts of violaxanthin (2-3/reaction center), representing a pool of phototransformable xanthophyll cycle pigments not associated with LHC proteins. Chlorina f2 and the plants grown under ImL also contained early light-induced proteins (ELIPs) as monitored by western blotting. The levels of both ELIPs and xanthophyll cycle pigments increased during a 1 h of high light treatment, without accumulation of LHC proteins. These data are consistent with the hypothesis that ELIPs are pigment-binding proteins, and we suggest that ELIPs bind photoconvertible xanthophylls and replace "normal" LHC proteins under conditions of light stress.  相似文献   

18.
19.
We have isolated and sequenced cDNA and genomic clones from Arabidopsis thaliana which specify a 241 residue protein with 84% sequence identity to a photosystem I Type I chlorophyll a/b -binding (CAB) protein from tomato. The open reading frame is interrupted by three introns which are found at equivalent positions as the corresponding introns in the tomato gene. Comparison to the amino acid sequence of other CAB proteins confirms that all CAB proteins share two regions of very high similarity. However, near the N-terminus and between the conserved regions this light-harvesting complex I (LHCI) protein, as other LHCI proteins from other plant species, has sequence motifs which appear to be PSI-specific. Restriction analysis of genomic DNA shows that the Arabidopsis protein is encoded by a single-copy gene.  相似文献   

20.
Using structural information from recently published crystal structures of photosystems I and II, the processes of excitation energy transfer and electron transfer in oxygenic photosynthesis have been studied in great detail by experimental and theoretical methods. Although both systems share numerous common structural and functional features, efficiency and regulation are differently weighted in the individual processes that are involved in the transformation of light energy into chemical energy in the two complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号