首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule‐organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver‐derived, CDK5RAP2‐deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late‐stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.  相似文献   

2.
3.
Properties of an insoluble form of trypsin   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
The effect on phenotypic expression of rabbit vascular smooth muscle cells (SMC) of the interstitial matrix proteins collagen I and fibronectin, the basal lamina proteins collagen IV and laminin, and the serum adhesion protein vitronectin was examined in culture. Experiments were performed in foetal calf serum stripped of fibronectin and vitronectin to eliminate their confounding effects. All the proteins promoted adhesion to the plastic culture dish (in a concentration dependent manner) of SMC freshly isolated from the artery wall. These cells had a high volume density of myofilaments (Vvmyo) in their cytoplasm. Laminin was best at maintaining SMC with a high Vvmyo (Vvmyo = 49.8%) followed by collagen IV (41.7%). Cells plated on vitronectin showed the lowest Vvmyo (31.3%). The results support the concept that the SMC basal lamina has a role in maintaining cells in the high Vvmyo phenotype.  相似文献   

6.
7.
8.
Urodele amphibians regenerate appendages through the recruitment of progenitor cells into a blastema that rebuilds the lost tissue. Blastemal formation is accompanied by extensive remodeling of the extracellular matrix. Although this remodeling process is important for appendage regeneration, it is not known whether the remodeled matrix directly influences the generation and behavior of blastemal progenitor cells. By integrating in vivo 3-dimensional spatiotemporal matrix maps with in vitro functional time-lapse imaging, we show that key components of this dynamic matrix, hyaluronic acid, tenascin-C and fibronectin, differentially direct cellular behaviors including DNA synthesis, migration, myotube fragmentation and myoblast fusion. These data indicate that both satellite cells and fragmenting myofibers contribute to the regeneration blastema and that the local extracellular environment provides instructive cues for the regenerative process. The fact that amphibian and mammalian myoblasts exhibit similar responses to various matrices suggests that the ability to sense and respond to regenerative signals is evolutionarily conserved.  相似文献   

9.
10.
11.
A study of peptide-peptide interactions on an insoluble matrix   总被引:1,自引:0,他引:1  
T H Gawronski  F Wold 《Biochemistry》1972,11(3):442-448
  相似文献   

12.
Centrosome duplication must remain coordinated with cell cycle progression to ensure the formation of a strictly bipolar mitotic spindle, but the mechanisms that regulate this coordination are poorly understood. Previous work has shown that prolonged S-phase is permissive for centrosome duplication, but prolonging either G2 or M-phase cannot support duplication. To examine whether G1 is permissive for centrosome duplication, we release serum-starved G0 cells into mimosine, which delays the cell cycle in G1. We find that in mimosine, centrosome duplication does occur, albeit slowly compared with cells that progress into S-phase; centrosome duplication in mimosine-treated cells also proceeds in the absence of a rise in Cdk2 kinase activity normally associated with the G1/S transition. CHO cells arrested with mimosine can also assemble more than four centrioles (termed "centrosome amplification"), but the extent of centrosome amplification during prolonged G1 is decreased compared to cells that enter S-phase and activate the Cdk2-cyclin complex. Together, our results suggest a model, which predicts that entry into S-phase and the rise in Cdk2 activity associated with this transition are not absolutely required to initiate centrosome duplication, but rather, serve to entrain the centrosome reproduction cycle with cell cycle progression.  相似文献   

13.
Induced muscle differentiation in an embryonal carcinoma cell line.   总被引:23,自引:7,他引:16       下载免费PDF全文
Cells of the teratocarcinoma-derived line P19S1801A1 (01A1) are pluripotent embryonal carcinoma cells and can be induced to differentiate when aggregated and exposed to dimethyl sulfoxide. Many nonneural cell types appear in dimethyl sulfoxide-treated cultures, cardiac and skeletal muscle being the most easily identified. We have used immunofluorescence procedures with monoclonal antibodies directed against muscle myosin to confirm and quantitate the number of muscle cells formed. A monoclonal antibody reactive with an embryonal carcinoma-specific surface antigen was used to confirm the disappearance of undifferentiated cells after dimethyl sulfoxide treatment. Cardiac muscle cells developed within 4 to 5 days of drug exposure, but skeletal muscle cells did not become evident until 7 to 8 days. We have isolated a mutant cell line (D3) which appears to be incapable of muscle development but which does form neurons and glial cells when exposed to high retinoic acid concentrations. We propose that this system will be useful for investigation of the means by which pluripotent cells become committed to development along the striated muscle lineages.  相似文献   

14.
15.
Mamon LA 《Tsitologiia》2008,50(1):5-17
Centrosomes are the major centre of microtubule nucleation and microtubule minus-ends concentration in animal cells. Microtubule plus-ends are directed to a nucleus and chromosomes or to a cell cortex. The crossing of signal transduction pathways and the network of interactions between signal molecules controlling cell cycle are revealed in centrosomes. The ability of centrosomes for reduplication suggests the existence of hypothetic template elements. It is attractive to suggest the essential role of specific centrosome-associated RNAs in biogenesis of centrosomes. Untranslated RNAs playing a structural role and mRNAs that are localized in centrosomes to regulate protein synthesis in close proximity to mitotic apparatus may be present among these RNAs. Centrosomes positioning plays the important role in determining of cell polarity. Centrosomes are critical for the formation and support of cilia and flagella having motility or sensory functions.  相似文献   

16.
We have examined the composition and ultrastructure of the nuclear periphery during in vitro myogenesis of the rat myoblast cell line, L6E9. Immunofluorescence labelling and immunoblotting showed that lamins A/C and B were all present in undifferentiated cells, but that they increased significantly before extensive cell fusion had occurred, with lamins A/C increasing proportionately more. Electron microscopic observations were consistent with these results, showing an increase in the prominence of the lamina during differentiation. On the other hand, immunofluorescence labelling suggested that the P1 antigen began to disappear from the nuclear periphery as the cells were fusing, after the increase in lamin quantity, and was no longer detectable in multinucleated cells. Unexpectedly, however, P1 was readily detected in isolated nuclei, whether prepared from myoblast or differentiated cultures, as well as in both myoblast and myotube nuclear matrices. It appears probable, therefore, that the fading of P1 labelling is due to masking of the epitope by a soluble factor recruited to the nuclear periphery as cells differentiate. These data, together with evidence that the genome is substantially rearranged during L6E9 myogenesis [Chaly and Munro, 1996], suggest that L6E9 cells are a useful model system in which to study the interrelationship of nuclear envelope organization, chromatin spatial order, and nuclear function. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Contractile protein populations were determined, using gel electrophoresis, during development of the claw closer muscles of the lobster Homarus americanus. In the adult the paired claw closer muscles are asymmetric, consisting of a crusher muscle with all slow fibers and a cutter muscle with a majority of fast and a few slow fibers. The electrophoretic banding pattern of these adult fast and slow fibers shows a similarity in the major proteins including myosin, actin, and tropomyosin which are common to both fiber types. Paramyosin is slightly heavier in fast fibers than in slow. However, fast fibers have three proteins and slow fibers have four proteins which are unique to themselves. Several of these unique proteins belong to the regulatory troponin complexes. In juvenile 4th stage lobster, where the paired closer muscles are undifferentiated, the banding pattern reveals the presence of proteins common to both fiber types including myosin, actin, and tropomysin but the conspicuous absence of all unique fast fiber proteins as well as one unique slow fiber protein. By the juvenile 10th stage most of these unique proteins are present except for one unique slow fiber protein. Thus lobster fast and slow fiber differentiation entails coordinate gene activation to add unique contractile proteins.  相似文献   

18.
19.
20.
K Hedlund 《Life sciences》1973,13(11):1491-1497
Hepatitis B antigen (HBAg) can be absorbed out of protein containing solutions by silicic acid. This can be demonstrated by direct as well as indirect assays. The bond between the insoluble matrix of silicic acid and HBAg forms quickly and is not disrupted by 3 molar salt solutions or pH levels of 1.8. This fact provides for a rather straight forward specificity control system in which “hot” (tagged) and cold (blocking) antibodies of known specificity can be added to and subtracted from the same specimen in any sequence desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号