首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.  相似文献   

2.
The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H+-ATPase activity in intercalated cells.  相似文献   

3.
The kidneys play a critical role in the maintenance of water homeostasis. This is achieved by the inherent architecture of the nephron along with the expression of various membrane transporters and channels that are responsible for the vectorial transport of salt and water. The collecting duct has become a focus of attention by virtue of its ability to transport water independent of solutes (free-water transport), and its apparent involvement in various water balance disorders. It was originally believed that the water transport capability of the collecting duct was solely under the influence of the circulating hormone, arginine vasopressin (AVP). However, during the past decade, locally produced autocrine and/or paracrine factors have emerged as potent modulators of transport of water by the collecting duct. Recently, much attention has been focused on the purinergic regulation of renal water transport. This review focuses on the role of the P2Y2 receptor, the predominant purinergic receptor expressed in the collecting duct, in the modulation of water transport in physiological and pathophysiological conditions, and its therapeutic potential as a drug target to treat water balance disorders in the clinic. Studies carried out by us and other investigators are unravelling potent interactions among AVP, prostanoid and purinergic systems in the medullary collecting duct, and the perturbations of these interactions in water balance disorders such as acquired nephrogenic diabetes insipidus. Future studies should address the potential therapeutic benefits of modulators of P2Y2 receptor signalling in water balance disorders, which are extremely prevalent in hospitalised patients irrespective of the underlying pathology.  相似文献   

4.
Despite the central role of tubular plasma proteins that characterize progressive kidney diseases, protein concentrations along the nephron in pathological conditions have not been quantified so far. We combined experimental techniques and theoretical analysis to estimate glomerular and tubular levels of albumin in the experimental model of 5/6 nephrectomy (Nx) in the rat, with or without angiotensin-converting enzyme (ACE) inhibition. We measured glomerular permselectivity by clearance of fluorescent Ficoll and albumin and used theoretical analysis to estimate tubular albumin. As expected, 5/6 Nx induced an elevation of the fractional clearance of the largest Ficoll molecules (radii >56 ?, P < 0.05), increasing the importance of the shunt pathway of the glomerular membrane and the albumin excretion rate (119 ± 41 vs. 0.6 ± 0.2 mg/24 h, P < 0.01). ACE inhibition normalized glomerular permselectivity and urinary albumin (0.5 ± 0.3 mg/24 h). Theoretical analysis indicates that with 5/6 Nx, an increased albumin filtration overcomes proximal tubule reabsorption, with a massive increase in average albumin concentration along the tubule, reaching the highest value of >2,500 μg/ml at the end of the collecting duct. ACE inhibition improved glomerular permselectivity, limiting albumin filtration under proximal tubule reabsorption capacity, with low albumin concentration along the entire nephron, averaging <13 μg/ml at the end of the collecting duct. These results reinforce our understanding of the mechanisms of renal disease progression and the effects of angiotensin II antagonism. They also suggest that evaluation of tubular protein concentration levels could help to identify patients at risk of kidney disease progression and to improve clinical management.  相似文献   

5.
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.  相似文献   

6.
7.
Summary Ischemia results in the marked reduction of renal proximal tubule function which is manifested by decreased Na+ and H2O reabsorption. In the present studies the possibility that altered Na+ and H2O reabsorption were due to ischemia-induced loss of surface membrane polarity was investigated. Following 15 min of renal ischemia and 2 hr of reperfusion, proximal tubule cellular ultrastructure was normal. However, abnormal redistribution of NaK-ATPase to the apical membrane domain was observed and large alterations in apical membrane lipid composition consistent with loss of surface membrane polarity were noted. These changes were associated with large decreases in Na+ (37.4vs. 23.0%,P<0.01) and H2O (48.6vs. 36.9%,P<0.01) reabsorption at a time when cellular morphology, apical Na+ permeability, Na+-coupled cotransport, intracellular pH and single nephron filtration rates were normal. We propose that the abnormal redistribution of NaK-ATPase to the apical membrane domain is in part responsible for reduced Na+ and H2O reabsorption following ischemic injury.  相似文献   

8.
Although extensive studies provided molecular and pharmacological characterization of metabotropic P2Y receptors for extracellular nucleotides, little is still known about their quaternary structure. By the use of transfected cellular systems and SDS-PAGE, in our previous work we established the propensity of P2Y4 receptor to form dimeric interactions. Here we focused on endogenously expressed P2Y4 and P2Y6 subtypes, comparing their oligomeric complexes under Blue Native (BN) gel electrophoresis. We provided evidence that P2Y4 and P2Y6 receptors form high order complexes in native neuronal phenotypes and that the oligomers can be disaggregated down to the dimeric P2Y4 or to the dimeric and monomeric P2Y6 receptor. Moreover, dimeric P2Y4 and monomeric P2Y6 proteins display selective microdomain partitioning in lipid rafts from specialized subcellular compartments such as synaptosomes. Ligand activation by UTP shifted the oligomerization of P2Y6 but not of P2Y4 receptor, as analysed by BN electrophoresis. Finally, whereas transfected P2Y4 and P2Y6 proteins homo-interact and posses the appropriate domains to associate with all P2Y1,2,4,6,11 subtypes, in naive PC12 cells the endogenous P2Y4 forms hetero-oligomers only with the P2Y6 subunit. In conclusion, our results indicate that quaternary structure distinguishing P2Y4 from P2Y6 receptors might be crucial for specific ligand activation, membrane partitioning and consequent functional regulation.  相似文献   

9.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

10.
Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y12 receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25–130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y12-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y12-R may represent a novel therapeutic target for Li-induced NDI.  相似文献   

11.
Phylogenetic analysis of transmembrane regions of GPCRs using PHYLIP indicated that the orphan receptor P2Y10 receptor was classified into the cluster consisting nucleotide and lipid receptors. Based on the results, we studied the abilities of nucleotides and lipids to activate the P2Y10 receptors. As a result, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) evoked intracellular Ca2+ increases in the CHO cells stably expressing the P2Y10 fused with a G16α protein. These Ca2+ responses were inhibited by S1P receptor and LPA receptor antagonists. The introduction of siRNA designed for P2Y10 receptor into the P2Y10-CHO cells effectively blocked both S1P- and LPA-induced Ca2+ increases. RT-PCR analysis showed that the mouse P2Y10 was expressed in reproductive organs, brain, lung and skeletal muscle, suggesting the receptor plays physiological roles throughout the whole body. In conclusion, the P2Y10 receptor is the first receptor identified as a dual lysophospholipid receptor.  相似文献   

12.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca2+ mobilization. Based on a mathematical model of purinergic Ca2+ signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y2 and P2Y4 receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca2+. Cellular responses versus concentration of BzATP, a P2Y2 agonist and a P2Y4 antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y2 and P2Y11 are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y2/P2Y4 homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y2 and P2Y4 receptors operative mostly in the dimeric form.  相似文献   

13.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   

14.
Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5′-triphosphate (ATP) and uridine 5′-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.  相似文献   

15.
Nucleotides present an important role in ocular physiology which has been demonstrated by recent works that indicate their involvement in many ocular processes. P2Y are important among P2 receptors since they can control tear production, corneal wound healing, aqueous humour dynamics and retinal physiology. Commercial antibodies have allowed us to investigate the distribution of P2Y receptors in the cornea, anterior and posterior chamber of the eye and retina. The P2Y1 receptor was present mainly in cornea, ciliary processes, and trabecular meshwork. The P2Y2 receptors were present in cornea, ciliary processes and retinal pigmented epithelium. P2Y4 was present in cornea, ciliary processes, photoreceptors, outer plexiform layer and ganglion cell layer. The P2Y6 presented almost an identical distribution as the P2Y4 receptor. The P2Y11 was also detectable in the retinal pigmented epithelium. The detailed distribution of the receptors clearly supports the recent findings indicating the relevant role of nucleotides in the ocular function.  相似文献   

16.
Synopsis The localization of carbonic anhydrase activity in the vertebrate nephron has been examined with particular reference to the proximal tubule and collecting duct. In all species studied, activity was present in the proximal tubular epithelium. In the pigeon and turtle, distinctive and similar patterns of staining were observed in the glomerulus and first portion of the proximal tubule. In the rat and rhesus monkey, the entire proximal tubule exhibited activity; in these species it has been shown previously with micropuncture techniques that there is a high absorptive capacity of this nephron segment for bicarbonate. In contrast, large portions of the dog proximal tubule were inactive; similar studies in this animal have shown tubular concentrations of bicarbonate only slightly lower than plasma levels. In the rat and dog, the entire length of the collecting duct was diffusely and intensely active; in contrast, pigeon collecting duct showed no activity. An alternating pattern of inactive and intensely active cells was observed in the collecting ducts of the toad, turtle, rabbit and monkey. A similar pattern has been described in the turtle and toad bladder, tissues utilized forin vitro studies of ion transport and H+ secretion.  相似文献   

17.
Ribose-based nucleoside 5′-diphosphates and triphosphates and related nucleotides were compared in their potency at the P2Y receptors with the corresponding nucleoside 5′-phosphonate derivatives. Phosphonate derivatives of UTP and ATP activated the P2Y2 receptor but were inactive or weakly active at P2Y4 receptor. Uridine 5′-(diphospho)phosphonate was approximately as potent at the P2Y2 receptor as at the UDP-activated P2Y6 receptor. These results suggest that removal of the 5′-oxygen atom from nucleotide agonist derivatives reduces but does not prevent interaction with the P2Y2 receptor. Uridine 5′-(phospho)phosphonate as well as the 5′-methylenephosphonate equivalent of UMP were inactive at the P2Y4 receptor and exhibited maximal effects at the P2Y2 receptor that were ?50% of that of UTP suggesting novel action of these analogues.  相似文献   

18.
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y1 and P2Y12 receptors, a P2Y14 receptor (GPR105) of unknown function, and anti-aggregatory A2A and A2B adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure–activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y1, P2Y12, and P2Y14 receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y12 receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y12 receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y1 receptor or the P2Y12 receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A2A AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A2A agonist CGS21680 and the P2Y1 receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.  相似文献   

19.
Summary Cytochemical localization of particulate guanylate cyclase (GC) in rat kidney, after stimulation with atrial natriuretic factor (ANF), was studied by electron microscopy. In the renal corpuscle GC reaction product was localized on podocytes. Other segments of the nephron that showed ultracytochemical evidence of GC activity were the proximal convoluted tubule, the thick ascending limb of the loop of Henle and the collecting tubule. All GC positivity was associated with plasma membranes. Samples incubated in basal conditions (without ANF) did not reveal any GC reaction product. These results indicate that ANF is a strong activator of particulate GC. Our data also suggests that, through the enzyme, ANF acts directly on epithelial cells of tubules where Na+ reabsorption occurs. This is in agreement with the hypothesis that ANF has a direct tubular effect on natriuresis.  相似文献   

20.
Amphibians inhabit areas ranging from completely aqueous to terrestrial environments and move between water and land. The kidneys of all anurans are similar at the gross morphological level: the structure of their nephrons is related to habitat. According to the observation by light and electron microscopy, the cells that make up the nephron differ among species. Immunohistochemical studies using antibodies to various ATPases showed a significant species difference depending on habitat. The immunoreactivity for Na+,K(+)-ATPase was low in the proximal tubules but high in the basolateral membranes of early distal tubules to collecting ducts in all species. In the proximal tubule, apical membranes of the cells were slightly immunoreactive to H(+)-ATPase antibody in aquatic species. In the connecting tubule and the collecting duct, the apical membrane of intercalated cells was immunoreactive in all species. In aquatic species, H+,K(+)-ATPase immunoreactivity was observed in cell along the proximal, distal tubule to the collecting duct. However, H+,K(+)-ATPase was present along the intercalated cells of the distal segments from early distal to collecting tubules in terrestrial and semi-aquatic species. In the renal corpuscle, the neck segment and the intermediate segment, immunoreactivities to ion pumps were not observed in any of the species examined. Taking together our observations, we conclude that in the aquatic species, a large volume of plasma must be filtered in a large glomerulus and the ultrafiltrate components are reabsorbed along a large and long proximal segment of the nephron. Control of tubular transport may be poorly developed when a small short distal segment of the nephron is observed. On the contrary, terrestrial species have a long and well-developed distal segment and regulation mechanisms of tubular transport may have evolved in these segments. Thus, the development of the late distal segments of the nephron is one of the important factors for the terrestrial adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号