首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
According to a sucrose density gradient analysis of cell organelles from homogenates of green leaves of rye, wheat and pea seedlings glutamate-pyruvate aminotransferase was predominantly localized in the leaf microbodies (peroxisomes; 90%) and to a minor extent in the mitochondria (10%) but completely absent from chloroplasts. In etiolated rye leaves the distribution of the enzyme was similar. In other non-green tissues glutamate-pyruvate aminotransferase was predominantly associated with the mitochondria but also present in the microbodies of dark-grown pea roots and in the glyoxysomes of Ricinus endosperm. In the microbodies isolated from potato tubers the enzyme was not detectable. Glutamate-pyruvate aminotransferase activity was not associated with the proplastid fractions of the non-green tissues. The distribution of glutamate-oxaloacetate aminotransferase was different from that of glutamate-pyruvate aminotransferase. Glutamate-oxaloacetate aminotransferase was found in chloroplasts, proplastids, mitochondria, microbodies and in the supernatant. Evidence is presented that glutamate-pyruvate and glutamate-glyoxylate aminotransferase activities were catalyzed by the same enzyme. Both activities showed the same organelle distribution on sucrose gradients and both were eluted at the same salt concentration from DEAE-cellulose. By chromatography of preparations from rye leaf extracts on DEAE-cellulose two forms of glutamate-pyruvate (glyoxylate) aminotransferase were separated. The major fraction eluting at a low salt concentration was identified as peroxisomal form and the minor fraction eluting at a higher salt concentration was identified as a mitochondrial form. Both the glutamate-glyoxylate and the glutamate-pyruvate aminotransferase activities of the peroxisomal as well as of the mitochondrial forms of the enzyme were strongly (about 80%) inhibited by the presence of 10 mM glycidate, previously described as an inhibitor of glutamate-glyoxylate aminotransferase in tobacco tissue. Pig heart glutamate-pyruvate aminotransferase exhibited no glutamate-glyoxylate aminotransferase activity and was only slightly inhibited by glycidate. The development of glutamate-pyruvate aminotransferase activity in the leaves of rye seedlings was strongly increased in the light, relative to dark-grown seedlings, and very similar to that of catalase activity while the development of glutamate-oxaloacetate aminotransferase was, in close coincidence with the behavior of leaf growth, only slightly enhanced by light. It is discussed that in green leaves an extrachloroplastic synthesis of alanine is of considerable advantage for the metabolic flow during photosynthesis.  相似文献   

2.
Summary In two forms of acetate flagellates, the colourless Volvocale Polytomella caeca and the green Volvocale Chlorogonium elongatum, cell organelles can be demonstrated which are ultrastructurally similar to microbodies of higher organisms. The organelles do not have a close association with the endoplasmic reticulum and are located in the peripheral cytoplasm between the elongated mitochondria. In Polytomella they exhibit more or less spherical profiles in section and have a maximum diameter of approximately 0.2–0.25 . In Chlorogonium the organelles occasionally have an elongated shape and are larger than in Polytomella. Employing the electron microscopic cytochemical reagent diaminobenzidine (DAB)/H2O2 to localize the microbodial marker enzyme catalase in these organelles, it was found that no accumulation of the electron-opaque product occurs in the microbodies either at alkaline or neutral pH or at room temperature or 37° C. Only the cristae of mitochondria are stained with the DAB reaction caused by cytochrome oxidase and possibly by a cytochrome peroxidase.Organelles of Polytomella caeca containing catalase or cytochrome oxidase can be separated by rate centrifugation of a crude particulate fraction on a sucrose gradient (Gerhardt, 1971). The particles isolated from the peak of catalase activity show the same fine structural characteristics as the microbodies in situ do. But again, there is no detectable staining of these organelles by the DAB/H2O2 reaction.The identity of the microbody-like particles in Polytomella caeca and Chlorogonium elongatum with microbodies in general is deduced despite the negative results in cytochemical localization of catalase in these organelles.  相似文献   

3.
Abstract The occurrence of microbodies in different cells of the nematophagous fungus Arthrobotrys oligospora has been investigated. In the predacious phase this organism forms complex 3-dimensional network traps. Mature trap cells generally were crowded with "special" microbodies which possessed an electron dense matrix and were surrounded by a membrane of approx. 9 nm. These organelles developed during the early stages of trap formation and were derived from specialized regions of the endoplasmic reticulum. Cytochemical staining experiments revealed that the electron-dense microbodies contained catalase and d -amino acid oxidase and thus must be considered peroxisomal in nature. Electron-dense bodies were absent in normal vegetative cells of the fungus. These cells contained "normal" microbodies which developed from each other by the separation of small organelles from mature ones. As in yeasts, the metabolic function of these latter organelles was dependent upon environmental conditions.  相似文献   

4.
Summary The ultrastructure of microbodies in developing zoosporangia ofEntophlyctis variabilis was studied by three dimensional reconstructions from serial sections and by cytochemical localization of catalase activity. The morphology of microbodies and the spatial association of microbodies with other organelles varied during fungal development. In incipient zoo-sporangia, granular dilations resembling microbodies arose from rough ER. Young, enlarging zoosporangia contained elongate, contorted microbodies continuous with ER and aligned along bundles of microtubules. Oval, paired microbodies, lying on each side of an ER cisternae, were found in all zoosporangia, but in older zoosporangia this configuration of microbodies predominated. Analysis of serial sections revealed that these oval, paired microbodies were sometimes continuous with each other, with ER, and also apparently with the ER cisterna interposed between them. Other paired, oval microbodies were clearly discrete. Constrictions were found along the length of elongate microbodies and at junctions between oval microbodies. These constrictions may represent stages in fragmentation of microbodies from pre-existing microbodies. These observations suggest that microbodies originated in three ways: 1. as local dilations in tubular ER, 2. as lateral buds from opposite sides of ER cisternae, and 3. as fragments from elongate microbodies.Microbodies were consistently spatially associated with ER, nuclear envelopes, and mitochondria. The cisterna of ER passing between paired microbodies sometimes extended into a branching, tubular system of ER which curved around the side of one microbody and lay between this microbody and the forming face of a dictyosome. The cytochemical localization of thiamine pyrophosphatase activity in this cisterna when it is not associated with dictyosomes suggests a role in metabolic control. These spatial associations indicate that the microbody assemblage with other organelles represents functional units where propinquity to other organelles and intraluminal continuities insure a system for transport of substrates and products.  相似文献   

5.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

6.
Growth of Candida famata and Trichosporon cutaneum on uric acid as the sole source of carbon and nitrogen was associated with the development of a number of microbodies in the cells. Cytochemical staining experiments showed that the organelles contained urate oxidase, a key enzyme of uric acid metabolism, and catalase. Transfer of cells, precultured on glucose or glycerol, into uric acid-containing media indicated that these microbodies originated from the organelles, originally present in the inoculum cells, by growth and division. In urate-grown C. famata the microbodies were frequently observed in large clusters; in both organisms they existed in close association with mitochondria and strands of ER. The organelles lacked crystalline inclusions. In freeze-fractured cells their surrounding membranes showed smooth fracture faces.Exposure of urate-grown cells to glucose-excess conditions led to a rapid inactivation of urate oxidase activity but catalase was only slightly inactivated. Glucose-induced enzyme inactivation was not associated with the degradation of the microbodies present in the cells. Similarly, repression of urate oxidase synthesis by ammonium ions also did not lead to the degradation of peroxisomes.  相似文献   

7.
M. Kar  J. Feierabend 《Planta》1984,162(5):385-391
Pollen grains of Plumbago zeylanica L. were serially sectioned and examined using transmission electron microscopy to determine the three-dimensional organization of sperm cells within the microgametophyte and the quantity of membrane-bound organelles occurring within each cell. Sperm cells occur in pairs within each pollen grain, but are dimorphic, differing in size, morphology and organelle content. The larger of the two sperm cells (Svn) is distinguished by the presence of a long (approx. 30 m) projection, which wraps around and lies within embayments of the vegetative nucleus. This cell contains numerous mitochondria, up to two plastids and, infrequently, microbodies. It is characterized by a larger volume and surface area and contains a larger nucleus than the other sperm cell. The second sperm cell (Sua) is linked by plasmodesmata with the Svn, but is unassociated with the vegetative nucleus. It is smaller and lacks a cellular projection. The Sua contains relatively few mitochondria, but numerous (up to 46) plastids and more microbodies than the other sperm. The degree of dimorphism in their content of heritable cytoplasmic organelles must at fertilization result in nearly unidirectional transmission of sperm plastids into just one of the two female reproductive cells, and preferential transmission of sperm mitochondria into the other.Abbreviations Sua sperm cell unassociated with the vegetative nucleus - Svn sperm cell physically associated with the vegetative nucleus 1=Russell and Cass (1981)  相似文献   

8.
Summary The fine structure of an organelle morphologically similar to microbodies found in higher plants and animals was studied in cells ofEuglena gracilis fixed simultaneously in glutaraldehyde and osmium tetroxide. These organelles were 0.4 to 0.8 microns in diameter, bounded by a single membrane, and frequently observed in close spatial association with both endoplasmic reticulum and mitochondria. Their finely granular matrices frequently contained membranous cores. Though these organelles were relatively abundant in acetate- and ethanolgrown cells, they were rarely observed in glucose-grown cells, an indication that they play the same role in the metabolism of 2-carbon substrates as do glyoxysomes in higher plants. The presence of these organelles, assumed to be microbodies, is also of considerable interest since catalase, an enzyme characteristic of microbodies from a variety of sources, was not detected.This work was supported in part by grant GY 3804 from the National Science Foundation to L.B.G.  相似文献   

9.
The material of pine seeds used in this investigation was collected in 1982 from Peking. The microbodies of mature embryo ceils are very well developed and their diameter averages about 2–3 μm, even up to 4.3 μm. The appearance is usually ovoid or elliptic. The microbodies are essentially glyoxysomes. The microbody matrix is composed of two types of substances, one type is of a finely granular material in a densely arrangement (Plate Ⅲ Fig. 6); the other is of coarsely granular or flocculant in appearance and the elements of the matrix are loosely distributed. These matrices usually contain an amorphous inclusion or crystalline arrays in regular arrangement. The inclusion sometimes occupies a small portion of the microbody matrix (Plate Ⅲ, Figs, 5, 6) and sometimes the inclusion occupies nearly the entire glyoxysome (Plate Ⅱ, Fig. 3). It is interesting that the “pockets” frequently appear in the microbodies of mature embryo cells, and those are actually as a result of invagination in microbodies (Plate Ⅱ, Fig. 4). In addition, an electron-transparent “oil body-like space” occurs occasionally in microbody (Plate Ⅰ, Fig. 1). The periphery of “space” is a constitutive part of matrix or continuing with the matrix. This “space” may be due to the degradation in a part of the matrix. While the periphery of the pocket is membranaceous and an electron-opaque cytoplasmic groundplasm was found within the pocket. The microbodies of mature embryo cells in Pinus are mainly distributed in pericolumn cells of the root cap and cortical cells of the hypocotyl. Besides the dominant organelles of lipid bodies in the cells of above mentioned tissues, there are also microbodies, amyloplasts, mitochondria, plastids, endoplasm reticulum and Golgi apparatus, of which the microbodies are the most aboundant organelles. In contrast, the microbodies and other organelle are rare in the parenchyma of the cotyledons in Pinus. Their common and outstanding characteristics in various tissues of mature embryo is that the entire cytoplasm of the cells is almost full of the lipid bodies, and each organelle is directly surrounded by a number of lipid bodies (Plate Ⅰ—Ⅲ, Figs. 1–6). Because of the other organelles are rare in parenchyma of the cotyledons, the lipid bodies are so appressed with each other that the inlaid periphery of lipid bodies frequently occurs in some degree. To sum up, based upon 'the state of distribution of microbodies in mature embryo tissues, cotyledons of Pinus could be considered as the main storage organ of nutrient substances, while the root cap and hypocotyl are the important sites of glyoxysome metabolism. The function of glyoxysomes is to convert lipid into the carbohydrates and to transfer the latter to embryos for growth.  相似文献   

10.
Summary A correlative approach, involving light and electron microscopic, cytochemical, and biochemical techniques, was used to study the structure and function of microbodies in zoospores ofEntophlyctis sp. The same population of microbodies already existing in the zoosporangium appeared to be segregated into zoospore initials during cytoplasmic cleavage. Microbodies laid at the anterior end of zoospores and were part of an organized assemblage of organelles, the microbody-lipid globule complex. In the microbody-lipid globule complex, endoplasmic reticulum occurred on the surface of the lipid globules toward the zoospore's exterior, and the microbody, subtended by mitochondria, was appressed to the opposite surface of the lipid globule. The organization of the microbody-lipid globule complex changed as the zoospore swam and encysted. As lipid globules coalesced, the microbody-lipid globule complex became disorganized. After lipid globule coalescence was completed, the microbody-lipid globule complex regained its order, and several microbodies were clustered adjacent to a single lipid globule. The microbodies persisted even in the encysted zoospore, but they were found on all sides of the lipid globule.Microbodies isolated from zoospores contained catalase as well as malate synthase and isocitrate lyase, two enzymes of the glyoxylate cycle. When zoospores encysted greater activities of these glyoxylate cycle enzymes could be detected. The presence of glyoxylate cycle enzymes and the close association between the microbody and lipid globule suggest that microbodies function as glyoxysomes in zoospores and encysted zoospores. The functional significance of the morphological organization of the microbody-lipid complex is discussed in terms of energy production and the conversion of storage lipid into structural components of the cell.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) is a human intestinal pathogen and a major cause of diarrhoea, particularly among infants in developing countries. EPEC target the Map and EspF multifunctional effector proteins to host mitochondria - organelles that play crucial roles in regulating cellular processes such as programmed cell death (apoptosis). While both molecules interfere with the organelles ability to maintain a membrane potential, EspF plays the predominant role and is responsible for triggering cell death. To learn more about the Map-mitochondria interaction, we studied Map localization to mitochondria with purified mitochondria (from mammalian and yeast cells) and within intact yeast. This revealed that (i) Map targeting is dependent on the predicted N-terminal mitochondrial targeting sequence, (ii) the N-terminal 44 residues are sufficient to target proteins to mitochondria and (iii) Map import involves the mitochondrial outer membrane translocase (Tom22 and Tom40), the mitochondrial membrane potential, and the matrix chaperone, mtHsp70. These results are consistent with Map import into the mitochondria matrix via the classical import mechanism. As all known, Map-associated phenotypes in mammalian cells are independent of mitochondrial targeting, this may indicate that import serves as a mechanism to remove Map from the cytoplasm thereby regulating cytoplasmic function. Intriguingly, Map, but not EspF, alters mitochondrial morphology with deletion analysis revealing important roles for residues 101-152. Changes in mitochondrial morphology have been linked to alterations in the ability of these organelles to regulate cellular processes providing a possible additional role for Map import into mitochondria.  相似文献   

12.
The Gram-positive methanogenic endosymbiont of the sapropelic ciliateMetopus striatus was isolated and identified asMethanobacterium formicicum. In the ciliate cell the methanogens are in close association with microbody-like organelles. No mitochondria could be detected. The nature of the microbodies and the physiological background of the observed association are discussed.  相似文献   

13.
The glycolytic pathway of the Kinetoplastida is organized in a unique manner: the majority of its enzymes are contained in organelles called glycosomes. In this article Paul Michels and Fred Opperdoes argue that the glycosomes are equivalent to the microbodies and peroxisomes identified in other eukaryotic cells. They explore the possible evolutionary origin of the glycosome by comparing many of its structural and functional properties with those of other members of the microbody family and with some features of other organelles, the mitochondria and chloroplasts, which have been studied in much more detail.  相似文献   

14.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

15.
I B Heath  M C Heath 《Cytobiologie》1978,16(3):393-411
Direct visual observation and time lapse films of in vitro differentiating infection structures of the cowpea rust fungus Uromyces phaseoli var. vignae revealed three categories of movement: a) general movement of cytoplasm, plus organelles, into the developing portions of the fungus during which the nuclei, in particular, maintained their characteristic position with remarkable constancy, b) relatively slow movements of various organelles such that they became displaced relative to one another and to the growing fungal tip, and c) erratic, rapid, saltations of small organelles over short distances. Serial section ultrastructural analysis showed that microtubules were typically orientated parallel to the direction of cytoplasm migration. Simple statistical analyses showed that the microtubules were non-randomly associated with mitochondria but only rarely associated with lipid droplets or microbodies. All microtubules were typically short (less than 2 micrometer) and, in various parts of the cell, were often intimately associated with 3 to 6 nm diameter filaments of unidentified material. Interphase nuclei characteristically lacked microtubules emanating from their variously laterally or posteriorly located NAOs (nucleus associated organelle) but were associated with groups of laterally placed microtubules. The correlations between the observed types of movement and the ultrastructure of the cells discussed in terms of various models for organelle motility.  相似文献   

16.
Dai J  Kuo KH  Leo JM  van Breemen C  Lee CH 《Cell calcium》2005,37(4):333-340
The mitochondria and the sarcoplasmic reticulum (SR) are two major intracellular calcium-storing organelles that exhibit close functional interaction with each other. Close spatial association is believed to be important for their functional interaction. In this study, we have characterized the spatial relationship between the SR and the mitochondria in porcine tracheal smooth muscle cells (TSMC) under different conditions. By examining the cross-section of unstimulated TSMC with electron microscopy, we found that 99.4 +/- 0.5% of the mitochondria seen on random cross-sections were situated within 30 nm of the SR and that 82.2 +/- 6.7% of the mitochondria were completely enveloped by the SR network. Overall, 48.0 +/- 3.5% of the mitochondrial outer membrane was within 30 nm with the SR. After stimulation of the TSMC with acetylcholine (ACh) or 80 mM [K(+)] solution 97.0 +/- 2.1% and 98.6 +/- 1.4% of the mitochondria observed were situated within 30 nm of the SR, respectively. However, the proportion of the mitochondria that was completely enveloped by the SR was significantly reduced to 12.2 +/- 5.9% in ACh-stimulated cells and 9.7 +/- 6.6% in 80 mM [K(+)] stimulated cells. The percentage of mitochondrial membrane closely associated with the SR was correspondingly lower at 10.1 +/- 1.0% during ACh stimulation and 10.8 +/- 0.9% during 80 mM [K(+)] stimulation. During smooth muscle cell stimulation, the SR appears to unwrap from the mitochondria and extend into the cytoplasm while maintaining close contact with the mitochondria over a smaller area. Such static and dynamic components of the close spatial association between the mitochondria and the SR may serve as a structural basis for the selective and efficient Ca(2+) trafficking between the two organelles in TSMC.  相似文献   

17.
The development of electron-dense microbodies in cells of capture organs of the nematophagous fungus Arthrobotrys oligospora was studied with different ultrastructural techniques. Kinetic experiments revealed that the synthesis of these microbodies started in a very early stage of trap formation; the organelles originated from special regions of endoplasmic reticulum by budding. Mature organelles were surrounded by a single membrane of approximately 9 nm (KMnO4-fixation) and lacked crystalline inclusions. The presence of the electron-dense microbodies was independent of the conditions during which the traps had developed. The organelles remained intact during aging of the trap cells. They were also observed in the trophic hyphae after capture and penetration of nematodes. However, the distribution patterns of these organelles in the trophic hyphae, which were identical to those observed after germination of isolated traps on different cultivation media, suggested that their presence must be explained by dilution of organelles in newly formed cells.  相似文献   

18.
Morphological data are presented concerning the single-membrane-bound vesicles ("oval bodies") associated with the nuclear envelopes of larval salivary gland cells of Drosophila. Data are also presented concerning the existence of cytoplasmic annulate lamellae in these same cells. The mode of formation of these structures, as well as the relationships between them and with other cytoplasmic organelles are described. The possible functional significance of these phenomena is discussed.  相似文献   

19.
Crystal-containing organelles in cells of virus infected plants lying at chloroplasts and mitochondria are identical with single membrane-bound microbodies containing crystals of catalase described in healthy plants. Massive complex inclusions caused by turnip mosaic virus very frequently contain the same microbodies with crystal inclusions; that phenomenon may be related to some pathophysiological changes of virus infected plants. Comparable proteinaceous crystals, but not lying within microbodies limited by a membrane, may also be found in cytoplasm of infected cells. These crystals are sometimes surrounded by a substance resembling the microbody matrix. Disintegrated cytoplasm of virus infected cells may also contain the same crystals lying free in “empty spaces”. Cytopathological effects responsible for this phenomenon and possible artifacts as well are discussed.  相似文献   

20.
1. The mitochondrial malate dehydrogenase from rat liver has been purified to a state of homogeneity as judged by starch-gel electrophoresis and the cytoplasmic isoenzyme has been obtained in a partically purified state. 2. Inhibition of the isoenzymes by sulphite has been studied. 3. In mitochondria loaded with sulphite, the catalytic activity of the (partially inhibited) internal malate dehydrogenase has been measured by addition of oxaloacetate to the suspension medium and observation of the consequent decrease in fluorescence of NADH. 4. Addition of mitochondrial malate dehydrogenase to suspensions of mitochondria loaded with sulphite resulted in an increase in the level of intramitochondrial enzymic activity as measured by the above technique. Addition of the cytoplasmic isoenzyme did not result in such an increase. 5. These results show that mitochondria in suspension are permeable to the mitochondrial malate dehydrogenase but not to the cytoplasmic isoenzyme. 6. This conclusion has been confirmed by direct measurement of a decrease of enzyme activity in solution and an increase inside the mitochondria after incubation of organelles in solutions containing mitochondrial malate dehydrogenase. No such effect was observed with the cytoplasmic isoenzyme. 7. Some features of the permeation process have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号