首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders.  相似文献   

2.
FTY720 has been used to control inflammatory lesions, but the mechanisms by which the drug acts in vivo are poorly understood. Such mechanisms may result primarily from effects on lymphocyte and dendritic cell homing to lymphoid and inflammatory sites. We demonstrate that FTY720 may also act by causing the conversion of TCR-stimulated nonregulatory CD4(+) T cells to Foxp3(+)CD4(+) regulatory T cells and by enhancing their suppressive activity. In a model in which mice were ocularly infected with HSV, daily treatment with FTY720 resulted in significantly diminished ocular lesions. The treated animals showed increased frequencies of Foxp3(+) T cells in lymphoid organs and at two inflammatory sites, namely cornea and trigeminal ganglia. In a second series of experiments, immunized DO11.10RAG2(-/-) animals, normally lacking endogenous Foxp3(+) T cells, that were given FTY720 treatment developed high frequencies of Foxp3(+) regulatory T cells in lymph nodes. Some converted cells persisted in treated animals for several weeks after drug administration was discontinued. Finally, FTY720 could effectively induce Foxp3-expressing cells from Foxp3(-) cells in vitro, an effect inhibited by anti-TGF-beta or the proinflammatory cytokine IL-6. Accordingly, the anti-inflammatory effects of FTY720 could be mediated at least in part by its ability to cause the conversion of Ag-stimulated conventional T cells to become Foxp3(+) regulators. The use of FTY720 along with Ag administration could represent a useful therapeutic means to selectively expand Ag-specific regulators, which could be valuable in many clinical situations such as allotransplants, some autoimmunities, as well as with some chronic infections.  相似文献   

3.
The immune modulator FTY720 targets sphingosine 1-phosphate receptors   总被引:28,自引:0,他引:28  
Immunosuppressant drugs such as cyclosporin have allowed widespread organ transplantation, but their utility remains limited by toxicities, and they are ineffective in chronic management of autoimmune diseases such as multiple sclerosis. In contrast, the immune modulating drug FTY720 is efficacious in a variety of transplant and autoimmune models without inducing a generalized immunosuppressed state and is effective in human kidney transplantation. FTY720 elicits a lymphopenia resulting from a reversible redistribution of lymphocytes from circulation to secondary lymphoid tissues by unknown mechanisms. Using FTY720 and several analogs, we show now that FTY720 is phosphorylated by sphingosine kinase; the phosphorylated compound is a potent agonist at four sphingosine 1-phosphate receptors and represents the therapeutic principle in a rodent model of multiple sclerosis. Our results suggest that FTY720, after phosphorylation, acts through sphingosine 1-phosphate signaling pathways to modulate chemotactic responses and lymphocyte trafficking.  相似文献   

4.
Zhang N  Qi Y  Wadham C  Wang L  Warren A  Di W  Xia P 《Autophagy》2010,6(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

5.
《Autophagy》2013,9(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

6.
The typical pathological feature of atherosclerosis is inflammation. In the last years, it has become evident that inhibition of inflammation is one important therapeutic option in atherosclerosis. Recently, sphingolipid sphingosine-1-phosphate (S1P) was identified as a crucial molecule with potent anti-inflammatory properties. Indeed, S1P activates various G protein-coupled receptors, namely S1P1-S1P5. In the vasculature, mainly S1P1-3 receptors are present. FTY720, after phosphorylation to FTY720-P, is an orally active S1P mimetic. FTY720 has been developed for therapy in the field of autoimmune diseases and organ transplantation. In analogy to S1P, FTY720 shows potent anti-inflammatory effects and several groups have tested the in vivo effects of FTY720 on the progression of inflammatory vascular diseases. They could show that S1P receptor activation might lead to a partial inhibition of the progression of atherosclerotic lesions. S1P receptor activation therefore might be a concept for anti-inflammatory drug treatment. However, it is not clear how S1P and FTY720 exactly act on vascular inflammation. This review article gives a brief overview over the known actions of S1P in vascular inflammatory disease.  相似文献   

7.
FTY720 is a novel investigational agent targeting the sphingosine 1-phosphate (S1P) receptors with an ability to cause immunosuppression by inducing lymphocyte sequestration in lymphoid organs. Systemic lupus erythematosus (SLE) is refractory autoimmune disease characterized by the production of a wide variety of autoantibodies and immune complex (IC)-mediated lupus nephritis. Among several SLE-prone strains of mice, BXSB is unique in terms of the disease-associated monocytosis in periphery and the reduced frequency of marginal zone B (MZ B) cells in spleen. In the present study, we examined the effect of FTY720 on lupus nephritis of BXSB mice. FTY720 treatment resulted in a marked decrease in lymphocytes, but not monocytes, in peripheral blood, and caused relocalization of marginal zone B (MZ B) cells into the follicle in the spleen. These changes did not affect the production of autoantibodies, thus IgG and C3 were deposited in glomeruli in FTY720-treated mice. Despite these IC depositions, FTY720-treated mice showed survival advantage with the improved proteinuria. Histological analysis revealed that FTY720 suppressed mesangial cell proliferation and inflammatory cell infiltration. These results suggest that FTY720 ameliorates lupus nephritis by inhibiting the end-stage inflammatory process following IC deposition in glomeruli.  相似文献   

8.

Background

The contribution of neuroinflammation and specifically brain lymphocyte invasion is increasingly recognised as a substantial pathophysiological mechanism after stroke. FTY720 is a potent treatment for primary neuroinflammatory diseases by inhibiting lymphocyte circulation and brain immigration. Previous studies using transient focal ischemia models showed a protective effect of FTY720 but did only partially characterize the involved pathways. We tested the neuroprotective properties of FTY720 in permanent and transient cortical ischemia and analyzed the underlying neuroimmunological mechanisms.

Methodology/Principal Findings

FTY720 treatment resulted in substantial reduction of circulating lymphocytes while blood monocyte counts were significantly increased. The number of histologically and flow cytometrically analyzed brain invading T- and B lymphocytes was significantly reduced in FTY720 treated mice. However, despite testing a variety of treatment protocols, infarct volume and behavioural dysfunction were not reduced 7d after permanent occlusion of the distal middle cerebral artery (MCAO). Additionally, we did not measure a significant reduction in infarct volume at 24h after 60 min filament-induced MCAO, and did not see differences in brain edema between PBS and FTY720 treatment. Analysis of brain cytokine expression revealed complex effects of FTY720 on postischemic neuroinflammation comprising a substantial reduction of delayed proinflammatory cytokine expression at 3d but an early increase of IL-1β and IFN-γ at 24 h after MCAO. Also, serum cytokine levels of IL-6 and TNF-α were increased in FTY720 treated animals compared to controls.

Conclusions/Significance

In the present study we were able to detect a reduction of lymphocyte brain invasion by FTY720 but could not achieve a significant reduction of infarct volumes and behavioural dysfunction. This lack of neuroprotection despite effective lymphopenia might be attributed to a divergent impact of FTY720 on cytokine expression and possible activation of innate immune cells after brain ischemia.  相似文献   

9.
The immunomodulator drug Gilenya (FTY720), marketed as the first oral sphingosine-1-phosphate receptor (S1P-R) modulator for treatment of Multiple Sclerosis (MS) also inhibits lysosomal acid sphingomyelinase (ASMase). Treatment of cultured cells for 24 h with FTY720 (up to 10 μM) inhibited ASMase by >80% and this could be reversed by pre-treatment with the cathepsin protease inhibitor leupeptin (5 μM). In contrast, neutral sphingomyelinase activity was unaffected and sphingosine-1-phosphate treatment had no effect on ASMase. RT-PCR revealed no inhibition of ASMase mRNA and there was no direct (in vitro) inhibition of ASMase by either FTY720 or FTY720-phosphate. This suggests that its mechanism of inhibition is similar to that of tricyclic anti-depressants such as desipramine, which are also amphiphilic cationic drugs. Both Desipramine and FTY720 treatment reduced ASMase without significant inhibition of other lysosomal hydrolases but most hydrolases showed increased secretion (up to a 50% increase) providing more evidence of lysosomal disruption by these drugs.  相似文献   

10.
FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol hydrochloride) prolongs survival of solid organ allografts in animal models. Mechanisms of FTY720 immunomodulation were studied in mice infected with lymphocytic choriomeningitis virus (LCMV) to assess T cell responses or with vesicular stomatitis virus to evaluate Ab responses. Oral FTY720 (0.3 mg/kg/day) did not affect LCMV replication and specific CTL and B cells were induced and expanded normally. Moreover, the anti-viral humoral immune responses were normal. However, FTY720 treatment showed first a shift of overall distribution of CTL from the spleen to peripheral lymph nodes and lymphocytopenia was observed. This effect was reversible within 7-21 days. Together with unimpaired T and B cell memory after FTY720 treatment, this finding rendered enhancement of lymphocyte apoptosis by FTY720 in vivo unlikely. Secondly, the delayed-type hypersensitivity reaction to a viral MHC class I-presented peptide was markedly reduced by FTY720. These results were supported by impaired circulation of LCMV specific TCR transgenic effector lymphocytes in the peripheral blood and reduced numbers of tissue infiltrating CTL in response to delayed-type hypersensitivity reaction. Thirdly, in a CD8+ T cell-mediated diabetes model in a transgenic mouse expressing the LCMV glycoprotein in the islets of the pancreas, FTY720 delayed or prevented disease by reducing islet-infiltrating CTL. Thus, FTY720 effectively reduced recirculation of CD8+ effector T cells and their recruitment to peripheral lesions without affecting the induction and expansion of immune responses in secondary lymphoid organs. These properties may offer the potential to treat ongoing organ-specific T cell-mediated immunopathologic disease.  相似文献   

11.
Following the present concepts, the synthetic sphingosine analog of myriocin FTY720 alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. However, several studies indicate that the immunosuppressive properties of FTY720 may alternatively be due to tolerogenic activities via modulation of dendritic cell differentiation or based on direct effects on CD4(+)CD25(+) regulatory T cells (Treg). As Treg play an important role for the cure of inflammatory colitis, we used the Th1-mediated 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model to address the therapeutic potential of FTY720 in vivo. A rectal enema of TNBS was given to BALB/c mice. FTY720 was administered i.p. from days 0 to 3 or 3 to 5. FTY720 substantially reduced all clinical, histopathologic, macroscopic, and microscopic parameters of colitis analyzed. The therapeutic effects of FTY720 were associated with a down-regulation of IL-12p70 and subsequent Th1 cytokines. Importantly, FTY720 treatment resulted in a prominent up-regulation of FoxP3, IL-10, TGFbeta, and CTLA4. Supporting the hypothesis that FTY720 directly affects functional activity of CD4(+)CD25(+) Treg, we measured a significant increase of CD25 and FoxP3 expression in isolated lamina propria CD4(+) T cells of FTY720-treated mice. The impact of FTY720 on Treg induction was further confirmed by concomitant in vivo blockade of CTLA4 or IL-10R which significantly abrogated its therapeutic activity. In conclusion, our data provide clear evidence that in addition to its well-established effects on migration FTY720 leads to a specific down-regulation of proinflammatory signals while simultaneously inducing functional activity of CD4(+)CD25(+) Treg. Thus, FTY720 may offer a promising new therapeutic strategy for the treatment of IBD.  相似文献   

12.
13.
FTY720, a sphingosine-derived immunomodulator, causes immunosuppression via enhancement of lymphocyte sequestration into secondary lymphoid organs, thereby preventing their antigen-activated T cell egress to sites of inflammation. FTY720 is highly effective in inhibiting autoimmunity in various animal models. However, there is little known about how FTY720 controls the migration property of memory T cells. Here, we demonstrated that FTY720 prevents the development of colitis induced by the adoptive transfer of lamina propria (LP) colitogenic effector memory CD4+ T cells (TEM cells; CD45RB(low)CD44(high)CD62L-) into severe combined immunodeficiency (SCID) mice and suppresses interferon-gamma, interleukin-2, and tumor necrosis factor-alpha production by LP CD4+ T cells. The numbers of spleen, peripheral blood, mesenteric lymph node, and LP CD4+ T cells in FTY720-treated mice were significantly reduced compared with those in control mice. Notably, LP CD4+ TEM cells as well as splenic CD4+CD45RBhigh T cells expressed several spingosine-1-phosphate receptors that are targets for FTY720. Furthermore, FTY720 also prevented the development of colitis induced by the adoptive transfer of splenic CD4+CD45RBhigh T cells into SCID mice. Collectively, the present data indicate that FTY720 treatment may offer the potential not only to prevent the onset of disease but also to treat memory T cell-mediated autoimmune diseases including inflammatory bowel diseases.  相似文献   

14.
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.  相似文献   

15.
Sphingosine 1-phosphate (S1P) signaling in the treatment of multiple sclerosis (MS) has been highlighted by the efficacy of FTY720 (fingolimod), which upon phosphorylation can modulate S1P receptor activities. FTY720 has become the first oral treatment for relapsing MS that was approved by the FDA in September 2010. Phosphorylated FTY720 modulates four of the five known S1P receptors (S1P(1), S1P(3), S1P(4), and S1P(5)) at high affinity. Studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have revealed that FTY720 exposure alters lymphocyte trafficking via sequestration of auto-aggressive lymphocytes within lymphoid organs, representing the current understanding of its mechanism of action. These effects primarily involve S1P(1), which is thought to attenuate inflammatory insults in the central nervous system (CNS). In addition, FTY720's actions may involve direct effects on S1P receptor-mediated signaling in CNS cells, based upon the known expression of S1P receptors in CNS cell types relevant to MS, access to the CNS through the blood-brain barrier (BBB), and in vitro studies. These data implicate lysophospholipid signaling--via S1P(1) and perhaps other lysophospholipid receptors--in therapeutic approaches to MS and potentially other diseases with immunological and/or neurological components.  相似文献   

16.
17.
Acute lymphoblastic leukemia (ALL), the most common form of childhood cancer, usually responds to chemotherapy but patients who develop disease relapse have a poor prognosis. New agents to treat ALL are urgently required. FTY720 is an immunosuppressive drug that has promising in vitro activity in a number of malignancies, with the proposed mechanism being the reactivation of the protein serine/threonine phosphatase, PP2A. FTY720 reduced the proliferation and viability of Ph(+) and Ph(-) ALL cell lines and patient samples with IC 50 values for viability between 5.3 to 7.9 μM. Cell death was caspase-independent with negligible activation of caspase-3 and no inhibition of FTY720-induced cell death by the caspase inhibitor Z-VAD-FMK. The cytotoxic effects of FTY720 were independent of PP2A reactivation as determined by the lack of effect of the PP2A inhibitor okadaic acid. Features of autophagy, including autophagosomes, LC3II expression and increased autophagic flux, were induced by FTY720. However the phosphorylated form of FTY720 (FTY720-P) similarly induced autophagy but not cell death. This suggests that autophagy is prosurvival in this setting, a finding supported by protection from cell death induced by the cytotoxic agent vincristine. FTY720 also induced reactive oxygen species (ROS) and the antioxidant N-acetyl-cysteine (NAC) partially reversed the cytotoxic effects, demonstrating a role for ROS generation in the cell death mechanism. FTY720 is an active drug in vitro in ALL cell lines and patient samples. Evidence supports a caspase-independent mechanism of cell death with the occurrence of autophagy and necrosis.  相似文献   

18.
Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3 % sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.  相似文献   

19.
《Autophagy》2013,9(7):707-715
Acute lymphoblastic leukemia (ALL), the most common form of childhood cancer, usually responds to chemotherapy but patients who develop disease relapse have a poor prognosis. New agents to treat ALL are urgently required. FTY720 is an immunosuppressive drug that has promising in vitro activity in a number of malignancies, with the proposed mechanism being the reactivation of the protein serine/threonine phosphatase, PP2A. FTY720 reduced the proliferation and viability of Ph+ and Ph- ALL cell lines and patient samples with IC50 values for viability between 5.3 to 7.9 μM. Cell death was caspase-independent with negligible activation of caspase-3 and no inhibition of FTY720-induced cell death by the caspase inhibitor Z-VAD-FMK. The cytotoxic effects of FTY720 were independent of PP2A reactivation as determined by the lack of effect of the PP2A inhibitor okadaic acid. Features of autophagy, including autophagosomes, LC3II expression and increased autophagic flux, were induced by FTY720. However the phosphorylated form of FTY720 (FTY720-P) similarly induced autophagy but not cell death. This suggests that autophagy is prosurvival in this setting, a finding supported by protection from cell death induced by the cytotoxic agent vincristine. FTY720 also induced reactive oxygen species (ROS) and the antioxidant N-acetyl-cysteine (NAC) partially reversed the cytotoxic effects, demonstrating a role for ROS generation in the cell death mechanism. FTY720 is an active drug in vitro in ALL cell lines and patient samples. Evidence supports a caspase-independent mechanism of cell death with the occurrence of autophagy and necrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号