首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During exercise, the oxygen consumption and the production of free radicals increase and can lead to oxidative stress with a deleterious effect on cellular structures involved in physical activity. To evaluate the oxidative stress produced by exercise and the role of ascorbate as an antioxidant, venous blood samples were obtained from 44 thoroughbred racehorses, before and after a 1000+/-200-m race at maximum velocity. Fourteen of these horses were treated intravenously with 5 g of ascorbate before running. Antioxidant capacity (PAOC), endogenous and exogenous ascorbate concentration, total antioxidant reactivity (TAR), urate concentration, creatine kinase activity, protein concentration and thiobarbiturate reactive substances (TBAR) as oxidative stress indicators were measured in the plasma of some of these horses. PAOC, TAR and TBAR increased after the race, while plasma ascorbate and urate concentrations remained unchanged. Total plasma protein (TPP) concentrations increased in line with antioxidant capacity. As predicted, both the plasma ascorbate concentration and PAOC increased immediately after ascorbate administration, but was not modified after the race, such as TBAR. However, in both groups plasma creatine kinase activity increased after the race. These results would suggest that the administration of ascorbate could nullify the oxidative stress produced by exercise in thoroughbred racehorses, but could not prevent muscular damage.  相似文献   

2.
We investigated the effect of exercise on iron metabolism in horses. Four horses were walked on a mechanical walker for 1 wk (pre-exercise). They then performed moderate exercise on a high-speed treadmill in the first week of the exercise and relative high in the second week and high in the third week. Serum iron was significantly lower in the third week of exercise than in the pre-exercise. Transferrin saturation (TS) was significantly lower in the first and third weeks of exercise than in the pre-exercise. Serum haptoglobin was significantly lower in the first week of exercise than in the pre-exercise and further significantly lower in the second and third weeks than in the first. The packed cell volume did not change during the experiment. The exercise significantly increased the apparent absorption of iron. Urinary iron excretion did not change throughout the experiment. Sweat iron loss did not change during the exercise. The exercise significantly increased iron balance. We considered that hemolysis is induced by moderate exercise and is further enhanced by heavy exercise, which decreases serum iron and TS. However, the increase in iron absorption compensates for the adverse effect of exercise on iron status. Therefore, exercise does not induce anemia in horses.  相似文献   

3.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

4.
5.
To examine the role of beta-adrenergic mechanisms in the regulation of endogenous glucose (Glu) production [rate of appearance (R(a))] and utilization [rate of disappearance (R(d))] and carbohydrate (CHO) metabolism, six horses completed consecutive 30-min bouts of exercise at approximately 30% (Lo) and approximately 60% (Hi) of estimated maximum O(2) uptake with (P) and without (C) prior administration of the beta-blocker propranolol (0.22 mg/kg iv). All horses completed exercise in C; exercise duration in P was 49.9 +/- 1.2 (SE) min. Plasma Glu was unchanged in C during Lo but increased progressively in Hi. In P, plasma Glu rose steadily during Lo and Hi and was higher (P < 0.05) than in C throughout exercise. Plasma insulin declined during exercise in P but not in C; beta-blockade attenuated (P < 0.05) the rise in plasma glucagon and free fatty acids and exaggerated the increases in epinephrine and norepinephrine. Glu R(a) was 8.1 +/- 0.8 and 8.4 +/- 1.0 micromol. kg(-1). min(-1) at rest and 30.5 +/- 3.6 and 42.8 +/- 4.1 micromol. kg(-1). min(-1) at the end of Lo in C and P, respectively. During Hi, Glu R(a) increased to 54.4 +/- 4.4 and 73.8 +/- 4.7 micromol. kg(-1). min(-1) in C and P, respectively. Similarly, Glu R(d) was approximately 40% higher in P than in C during Lo (27.3 +/- 2.0 and 39.5 +/- 3.3 micromol. kg(-1). min(-1) in C and P, respectively) and Hi (37.4 +/- 2.6 and 61.5 +/- 5.3 micromol. kg(-1). min(-1) in C and P, respectively). beta-Blockade augmented CHO oxidation (CHO(ox)) with a concomitant reduction in fat oxidation. Inasmuch as estimated muscle glycogen utilization was similar between trials, the increase in CHO(ox) in P was due to increased use of plasma Glu. We conclude that beta-blockade increases Glu R(a) and R(d) and CHO(ox) in horses during exercise. The increase in Glu R(d) under beta-blockade suggests that beta-adrenergic mechanisms restrain Glu R(d) during exercise.  相似文献   

6.
This studyexamined the effect of increased blood glucose availability on glucosekinetics during exercise. Five trained men cycled for 40 min at 77 ± 1% peak oxygen uptake on two occasions. During the second trial(Glu), glucose was infused at a rate equal to the average hepaticglucose production (HGP) measured during exercise in the control trial(Con). Glucose kinetics were measured by a primed continuous infusionofD-[3-3H]glucose.Plasma glucose increased during exercise in both trials and wassignificantly higher in Glu. HGP was similar at rest (Con, 11.4 ± 1.2; Glu, 10.6 ± 0.6µmol · kg1 · min1).After 40 min of exercise, HGP reached a peak of 40.2 ± 5.5 µmol · kg1 · min1in Con; however, in Glu, there was complete inhibition of the increasein HGP during exercise that never rose above the preexercise level. Therate of glucose disappearance was greater(P < 0.05) during the last 15 min ofexercise in Glu. These results indicate that an increase in glucoseavailability inhibits the rise in HGP during exercise, suggesting thatmetabolic feedback signals can override feed-forward activation of HGPduring strenuous exercise.

  相似文献   

7.
Effect of mild-to-moderate airflow limitation on exercise capacity   总被引:5,自引:0,他引:5  
To determine the effect of mild-to-moderate airflow limitation on exercise tolerance and end-expiratory lung volume (EELV), we studied 9 control subjects with normal pulmonary function [forced expired volume in 1 s (FEV1) 105% pred; % of forced vital capacity expired in 1 s (FEV1/FVC%) 81] and 12 patients with mild-to-moderate airflow limitation (FEV1 72% pred; FEV1/FVC % 58) during progressive cycle ergometry. Maximal exercise capacity was reduced in patients [69% of pred maximal O2 uptake (VO2max)] compared with controls (104% pred VO2max, P less than 0.01); however, maximal expired minute ventilation-to-maximum voluntary ventilation ratio and maximal heart rate were not significantly different between controls and patients. Overall, there was a close relationship between VO2max and FEV1 (r2 = 0.62). Resting EELV was similar between controls and patients [53% of total lung capacity (TLC)], but at maximal exercise the controls decreased EELV to 45% of TLC (P less than 0.01), whereas the patients increased EELV to 58% of TLC (P less than 0.05). Overall, EELV was significantly correlated to both VO2max (r = -0.71, P less than 0.001) and FEV1 (r = -0.68, P less than 0.001). This relationship suggests a ventilatory influence on exercise capacity; however, the increased EELV and associated pleural pressures could influence cardiovascular function during exercise. We suggest that the increase in EELV should be considered a response reflective of the effect of airflow limitation on the ventilatory response to exercise.  相似文献   

8.
9.
Physical exercise induces gene expression changes that trigger glucose metabolism pathways in organisms. In the present study, we monitored the expression levels of LDHA (lactate dehydrogenase) and GYS1 (glycogen synthase 1) in the blood, to confirm the roles of these genes in exercise physiology. LDHA and GYS1 are related to glucose metabolism and fatigue recovery, and these processes could elicit economically important traits in racehorses. We collected blood samples from three retired thoroughbred racehorses, pre-exercise and immediately after 30 min of exercise. We extracted total RNA and small RNA (≤ 200 nucleotide-long) from the blood, and assessed the expression levels of LDHA, GYS1, and microRNAs (miRNAs), by using qRT-PCR. We showed that LDHA and GYS1 were down-regulated, whereas eca-miR-33a and miR-17 were up-regulated, after exercise. We used sequences from the 3′ UTR of LDHA and GYS1, containing eca-miR-33a and miR-17 binding sites, to observe the down-regulation activity of each gene expression. We observed that the two miRNAs, namely, eca-miR-33a and miR-17, inhibited LDHA and GYS1 expression via binding to the 3′ UTR sequences of each gene. Our results indicate that eca-miR-33a and miR-17 play important roles in the glucose metabolism pathway. In addition, our findings provide a basis for further investigation of the exercise metabolism of racehorses.  相似文献   

10.
11.
During short-term maximal exercise,horses have impaired pulmonary gas exchange, manifested by diffusionlimitation and arterial hypoxemia, without marked ventilation-perfusion(A/)inequality. Whether gas exchange deteriorates progressively duringprolonged submaximal exercise has not been investigated. Sixthoroughbred horses performed treadmill exercise at ~60% of maximaloxygen uptake until exhaustion (28-39 min). Multipleinert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory datawere obtained at rest and 5-min intervals during exercise. Oxygenuptake, cardiac output, and alveolar-arterialPO2 gradient were unchanged after thefirst 5 min of exercise. Alveolar ventilation increased progressivelyduring exercise, from increased tidal volume and respiratory frequency,resulting in an increase in arterialPO2 and decrease in arterialPCO2. At rest there was minimal A/inequality, log SD of the perfusion distribution (logSD) = 0.20. This doubled by 5 min of exercise (logSD = 0.40) butdid not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintainexcellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughA/inequality is greater than at rest, it is less than observed in mostmammals and the effect on gas exchange is minimal.

  相似文献   

12.
Effect of heat stress on glucose kinetics during exercise   总被引:2,自引:0,他引:2  
Hargreaves, Mark, Damien Angus, Kirsten Howlett, Nelly MarmyConus, and Mark Febbraio. Effect of heat stress on glucose kinetics during exercise. J. Appl.Physiol. 81(4): 1594-1597, 1996.To identify themechanism underlying the exaggerated hyperglycemia during exercise inthe heat, six trained men were studied during 40 min of cyclingexercise at a workload requiring 65% peak pulmonary oxygen uptake(O2 peak) on twooccasions at least 1 wk apart. On one occasion, the ambient temperaturewas 20°C [control (Con)], whereas on the other, it was40°C [high temperature (HT)]. Rates ofglucose appearance and disappearance were measured by using a primedcontinuous infusion of[6,6-2H]glucose. Nodifferences in oxygen uptake during exercise were observed betweentrials. After 40 min of exercise, heart rate, rectal temperature,respiratory exchange ratio, and plasma lactate were all higher in HTcompared with Con (P < 0.05). Plasmaglucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT,4.81 ± 0.19 mmol/l) but increased to a greater extent duringexercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of ahigher glucose rate of appearance in HT during the last 30 min ofexercise. In contrast, the glucose rate of disappearance and metabolicclearance rate were not different at any time point during exercise.Plasma catecholamines were higher after 10 and 40 min of exercise in HTcompared with Con (P < 0.05),whereas plasma glucagon, cortisol, and growth hormone were higher in HTafter 40 min. These results indicate that the hyperglycemia observedduring exercise in the heat is caused by an increase in liver glucoseoutput without any change in whole body glucoseutilization.

  相似文献   

13.
14.
Effect of glucose infusion on muscle malonyl-CoA during exercise   总被引:1,自引:0,他引:1  
Previous work in this laboratory has shown that muscle malonyl-CoA, the inhibitor of carnitine palmitoyltransferase I (CPT I), decreased during exercise. Hepatic malonyl-CoA content decreases when glucose availability decreases such as during fasting or when the glucagon-to-insulin ratio increases such as during prolonged exercise or in response to insulin deficiency. To investigate the effect of glucose infusion on muscle malonyl-CoA during exercise, male rats were anesthetized (pentobarbital via venous catheters) at rest or after running (21 m/min, 15% grade) for 30 or 60 min. During exercise rats were infused with either glucose (0.625 g/ml) or saline at a rate of 1.5 ml/h. Gastrocnemius muscles and liver samples were frozen at liquid nitrogen temperature. Muscle malonyl-CoA decreased from 1.24 +/- 0.06 to 0.69 +/- 0.05 nmol/g with glucose infusion and to 0.43 +/- 0.04 nmol/g with saline infusion during 60 min of exercise. In the liver, glucose infusion prevented the drop in malonyl-CoA. This indicates that glucose infusion attenuates the progressive decline in muscle malonyl-CoA and prevents the decline in liver malonyl-CoA during prolonged exercise.  相似文献   

15.
16.
17.
18.
Several studies have demonstrated that oral glucose tolerance is impaired in the immediate postexercise period. A double-tracer technique was used to examine glucose kinetics during a 2-h oral glucose (75 g) tolerance test (OGTT) 30 min after exercise (Ex, 55 min at 71 +/- 2% of peak O(2) uptake) and 24 h after exercise (Rest) in endurance-trained men. The area under the plasma glucose curve was 71% greater in Ex than in Rest (P = 0.01). The higher glucose response occurred even though whole body rate of glucose disappearance was 24% higher after exercise (P = 0.04, main effect). Whole body rate of glucose appearance was 25% higher after exercise (P = 0.03, main effect). There were no differences in total (2 h) endogenous glucose appearance (R(a)E) or the magnitude of suppression of R(a)E, although R(a)E was higher from 15 to 30 min during the OGTT in Ex. However, the cumulative appearance of oral glucose was 30% higher in Ex (P = 0.03, main effect). There were no differences in glucose clearance rate or plasma insulin responses between the two conditions. These results suggest that adaptations in splanchnic tissues by prior exercise facilitate greater glucose output from the splanchnic region after glucose ingestion, resulting in a greater glycemic response and, consequently, a greater rate of whole body glucose uptake.  相似文献   

19.
20.
The effects of gender difference and voluntary exercise on antioxidant capacity in rats were evaluated. The subjects were divided into two groups, physically active and sedentary. In the sedentary group, the level of hydroxyl radical in the liver was higher (P<0.001) in male rats than in female rats, however, in the physically active group, the level in male rats was lower (P<0.05) than in female rats. The levels of reduced glutathione (GSH) in physically active males and females were higher compared to those in the sedentary group. The physically active group also showed an increase in antioxidant enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase activities. The level of liver GSH was higher in physically active females than in physically active males. For both groups, GPx and GR activities in females were significantly higher than in males. These results indicate that female rats have an intrinsically higher antioxidant capacity, which resulted in increased levels of GSH via the glutathione redox cycle and gamma-glutamyl cycle enzymes. The adaptation to altered antioxidant capacity, induced by physical activity, appeared to be affected by gender differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号