首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial lipoproteins play a crucial role in virulence in some gram-positive bacteria. However, the role of lipoprotein biosynthesis in Bacillus anthracis is unknown. We created a B. anthracis mutant strain altered in lipoproteins by deleting the lgt gene encoding the enzyme prolipoprotein diacylglyceryl transferase, which attaches the lipid anchor to prolipoproteins. (14)C-palmitate labelling confirmed that the mutant strain lacked lipoproteins, and hydrocarbon partitioning showed it to have decreased surface hydrophobicity. The anthrax toxin proteins were secreted from the mutant strain at nearly the same levels as from the wild-type strain. The TLR2-dependent TNF-α response of macrophages to heat-killed lgt mutant bacteria was reduced. Spores of the lgt mutant germinated inefficiently in vitro and in mouse skin. As a result, in a murine subcutaneous infection model, lgt mutant spores had markedly attenuated virulence. In contrast, vegetative cells of the lgt mutant were as virulent as those of the wild-type strain. Thus, lipoprotein biosynthesis in B. anthracis is required for full virulence in a murine infection model.  相似文献   

2.
Numerous cell surface components of Listeria influence and regulate innate immune recognition and virulence. Here, we demonstrate that lipidation of prelipoproteins in Listeria monocytogenes is required to promote NF-kappaB activation via TLR2. In HeLa cells transiently expressing TLR2, L. monocytogenes and Listeria innocua mutants lacking the prolipoprotein diacylglyceryl transferase (lgt) gene are unable to induce TLR2-dependent activation of NF-kappaB, a property intrinsic to their isogenic parental strains. TLR2-dependent immune recognition is directed to secreted, soluble lipoproteins as evidenced by the sensitivity of the response to lipoprotein lipase. Studies of bone marrow-derived macrophages of C57BL/6 wild-type and TLR2-deficient mice infected with wild-type and lgt mutant strains indicate that the absence of host TLR2 receptor signaling has consequences similar to those of the absence of the bacterial TLR2 ligand, i.e., a delay in cellular immune responses directed toward the bacterium. Infection studies with the wild-type and TLR2(-/-) mice indicated attenuation of the lgt deletion mutant in both mouse strains, implying multiple roles of lipoproteins during infection. Further characterization of the Delta lgt mutant indicated that it is impaired for both invasion and intracellular survival and exhibits increased susceptibility to cationic peptides. Our studies identify lipoproteins as the immunologically active ligand of TLR2 and assign a critical role for this receptor in the recognition of these bacteria during infection, but they also reveal the overall importance of the lipoproteins for the pathogenicity of Listeria.  相似文献   

3.
Group B streptococcus (GBS) is the most important cause of neonatal sepsis, which is mediated in part by TLR2. However, GBS components that potently induce cytokines via TLR2 are largely unknown. We found that GBS strains of the same serotype differ in released factors that activate TLR2. Several lines of genetic and biochemical evidence indicated that lipoteichoic acid (LTA), the most widely studied TLR2 agonist in Gram-positive bacteria, was not essential for TLR2 activation. We thus examined the role of GBS lipoproteins in this process by inactivating two genes essential for bacterial lipoprotein (BLP) maturation: the prolipoprotein diacylglyceryl transferase gene (lgt) and the lipoprotein signal peptidase gene (lsp). We found that Lgt modification of the N-terminal sequence called lipobox was not critical for Lsp cleavage of BLPs. In the absence of lgt and lsp, lipoprotein signal peptides were processed by the type I signal peptidase. Importantly, both the Deltalgt and the Deltalsp mutant were impaired in TLR2 activation. In contrast to released factors, fixed Deltalgt and Deltalsp GBS cells exhibited normal inflammatory activity indicating that extracellular toxins and cell wall components activate phagocytes through independent pathways. In addition, the Deltalgt mutant exhibited increased lethality in a model of neonatal GBS sepsis. Notably, LTA comprised little, if any, inflammatory potency when extracted from Deltalgt GBS. In conclusion, mature BLPs, and not LTA, are the major TLR2 activating factors from GBS and significantly contribute to GBS sepsis.  相似文献   

4.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   

5.
Many Gram-positive bacteria produce lipoteichoic acid (LTA) polymers whose physiological roles have remained a matter of debate because of the lack of LTA-deficient mutants. The ypfP gene responsible for biosynthesis of a glycolipid found in LTA was deleted in Staphylococcus aureus SA113, causing 87% reduction of the LTA content. Mass spectrometry and nuclear magnetic resonance spectroscopy revealed that the mutant LTA contained a diacylglycerol anchor instead of the glycolipid, whereas the remaining part was similar to the wild-type polymer except that it was shorter. The LTA mutant strain revealed no major changes in patterns of cell wall proteins or autolytic enzymes compared with the parental strain indicating that LTA may be less important in S. aureus protein attachment than previously thought. However, the autolytic activity of the mutant was strongly reduced demonstrating a role of LTA in controlling autolysin activity. Moreover, the hydrophobicity of the LTA mutant was altered and its ability to form biofilms on plastic was completely abrogated indicating a profound impact of LTA on physicochemical properties of bacterial surfaces. We propose to consider LTA and its biosynthetic enzymes as targets for new antibiofilm strategies.  相似文献   

6.
S-(2,3-bispalmitoyloxypropyl)Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) derived from Mycoplasma salivarium stimulated NF-kappaB reporter activity in human embryonic kidney 293 (HEK293) cells transfected with Toll-like receptor 2 (TLR2) or cotransfected with TLR2 and TLR6, but not in HEK293 cells transfected with TLR6, in a dose-dependent manner. The activity was significantly higher in HEK293 cells transfected with both TLR2 and TLR6 than in HEK293 cells transfected with only TLR2. The deletion mutant TLR2(DeltaS40-I64) (a TLR2 mutant with a deletion of the region of Ser(40) to Ile(64)) failed to activate NF-kappaB in response to FSL-1. The deletion mutant TLR2(DeltaC30-S39) induced NF-kappaB reporter activity, but the level of activity was significantly reduced compared with that induced by wild-type TLR2. A TLR2 point mutant with a substitution of Glu(178) to Ala (TLR2(E178A)), TLR2(E180A), TLR2(E190A), and TLR2(L132E) induced NF-kappaB activation when stimulated with FSL-1, M. salivarium lipoproteins, and Staphylococcus aureus peptidoglycans, but TLR2(L107E), TLR2(L112E) (a TLR2 point mutant with a substitution of Leu(112) to Glu), and TLR2(L115E) failed to induce NF-kappaB activation, suggesting that these residues are essential for their signaling. Flow cytometric analysis demonstrated that TLR2(L115E), TLR2(L112E), and TLR2(DeltaS40-I64) were expressed on the cell surface of the transfectants as wild-type TLR2 and TLR2(E190A) were. In addition, these mutants, except for TLR2(E180A), functioned as dominant negative form of TLR2. This study strongly suggested that the extracellular region of Ser(40)-Ile(64) and leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of TLR2 are involved in the recognition of mycoplasmal diacylated lipoproteins and lipopeptides and in the recognition of S. aureus peptidoglycans.  相似文献   

7.
Lipoprotein anchoring in bacteria is mediated by the prolipoprotein diacylglyceryl transferase (Lgt), which catalyzes the transfer of a diacylglyceryl moiety to the prospective N-terminal cysteine of the mature lipoprotein. Deletion of the lgt gene in the gram-positive pathogen Listeria monocytogenes (i) impairs intracellular growth of the bacterium in different eukaryotic cell lines and (ii) leads to increased release of lipoproteins into the culture supernatant. Comparative extracellular proteome analyses of the EGDe wild-type strain and the Delta lgt mutant provided systematic insight into the relative expression of lipoproteins. Twenty-six of the 68 predicted lipoproteins were specifically released into the extracellular proteome of the Delta lgt strain, and this proved that deletion of lgt is an excellent approach for experimental verification of listerial lipoproteins. Consequently, we generated Delta lgt Delta prfA double mutants to detect lipoproteins belonging to the main virulence regulon that is controlled by PrfA. Overall, we identified three lipoproteins whose extracellular levels are regulated and one lipoprotein that is posttranslationally modified depending on PrfA. It is noteworthy that in contrast to previous studies of Escherichia coli, we unambiguously demonstrated that lipidation by Lgt is not a prerequisite for activity of the lipoprotein-specific signal peptidase II (Lsp) in Listeria.  相似文献   

8.
H Y Qi  K Sankaran  K Gan    H C Wu 《Journal of bacteriology》1995,177(23):6820-6824
The structure-function relationship of bacterial prolipoprotein diacylgyceryl transferase (LGT) Has been investigated by a comparison of the primary structures of this enzyme in phylogenetically distant bacterial species, analysis of the sequences of mutant enzymes, and specific chemical modification of the Escherichia coli enzyme. A clone containing the gene for LGT, lgt, of the gram-positive species Staphylococcus aureus was isolated by complementation of the temperature-sensitive lgt mutant of E. coli (strain SK634) defective in LGT activity. In vivo and in vitro assays for prolipoprotein diacylglyceryl modification activity indicated that the complementing clone restored the prolipoprotein modification activity in the mutant strain. Sequence determination of the insert DNA revealed an open reading frame of 837 bp encoding a protein of 279 amino acids with a calculated molecular mass of 31.6 kDa. S. aureus LGT showed 24% identity and 47% similarity with E. coli, Salmonella typhimurium, and Haemophilus influenzae LGT.S. aureus LGT, while 12 amino acids shorter than the E. coli enzyme, had a hydropathic profile and a predicted pI (10.4) similar to those of the E. coli enzyme. Multiple sequence alignment among E. coli, S. typhimurium, H. influenzae, and S. aureus LGT proteins revealed regions of highly conserved amino acid sequences throughout the molecule. Three independent lgt mutant alleles from E. coli SK634, SK635, and SK636 and one lgt allele from S. typhimurium SE5221, all defective in LGT activity at the nonpermissive temperature, were cloned by PCR and sequenced. The mutant alleles were found to contain a single base alteration resulting in the substitution of a conserved amino acid. The longest set of identical amino acids without any gap was H-103-GGLIG-108 in LGT from these four microorganisms. In E. coli lgt mutant SK634, Gly-104 in this region was mutated to Ser, and the mutant organism was temperature sensitive in growth and exhibited low LGT activity in vitro. Diethylpyrocarbonate inactivated the E. coli LGT with a second-order rate constant of 18.6 M-1S-1, and the inactivation of LGT activity was reversed by hydroxylamine at pH 7. The inactivation kinetics were consistent with the modification of a single residue, His or Tyr, essential for LGT activity.  相似文献   

9.
We investigated the conservation and antibody accessibility of inner core epitopes of Moraxella catarrhalis lipopolysaccharide (LPS) in order to assess their potential as vaccine candidates. Two LPS mutants, a single mutant designated lgt2 and a double mutant termed lgt2/lgt4, elaborating truncated inner core structures were generated in order to preclude expression of host-like outer core structures and to create an inner core structure that was shared by all three serotypes A, B and C of M. catarrhalis. Murine monoclonal antibodies (mAbs), designated MC2-1 and MC2-10 were obtained by immunising mice with the lgt2 mutant of M. catarrhalis serotype A strain. We showed that mAb MC2-1 can bind to the core LPS of wild-type (wt) serotype A, B and C organisms and concluded that mAb MC2-1 defines an immunogenic inner core epitope of M. catarrhalis LPS. We were unsuccessful in obtaining mAbs to the lgt2/lgt4 mutant. MAb MC2-10 only recognised the lgt2 mutant and the wt serotype A strain, and exhibited a strong requirement for the terminal N-acetyl-glucosamine residue of the lgt2 mutant core oligosaccharide, suggesting that this residue was immunodominant. Subsequently, we showed that both mAbs MC2-1 and MC2-10 could facilitate bactericidal killing of the lgt2 mutant, however neither mAb could facilitate bactericidal killing of the wt serotype A strain. We then confirmed and extended the candidacy of the inner core LPS by demonstrating that it is possible to elicit functional antibodies against M. catarrhalis wt strains following immunisation of rabbits with glycoconjugates elaborating the conserved inner core LPS antigen. The present study describes three conjugation strategies that either uses amidases produced by Dictyostelium discoideum, targeting the amino functionality created by the amidase activity as the attachment point on the LPS molecule, or a strong base treatment to remove all fatty acids from the LPS, thus creating amino functionalities in the lipid A region to conjugate via maleimide-thiol linker strategies targeting the carboxyl residues of the carrier protein and the free amino functionalities of the derived lipid A region of the carbohydrate resulted in a high loading of carbohydrates per carrier protein from these carbohydrate preparations. Immunisation derived antisera from rabbits recognised fully extended M. catarrhalis LPS and whole cells. Moreover, bactericidal activity was demonstrated to both the immunising carbohydrate antigen and importantly to wt cells, thus further supporting the consideration of inner core LPS as a potential vaccine antigen to combat disease caused by M. catarrhalis.  相似文献   

10.
Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection.  相似文献   

11.
A transposition mutant of Staphylococcus aureus was selected from the parent strain MT23142, a derivative of strain 8325. The site of transposition was near the 5' terminus of the gene arlS. ArlS exhibits strong similarities with histidine protein kinases. Sequence analysis suggested that arlS forms an operon with upstream gene arlR. The predicted product of arlR is a member of the OmpR-PhoB family of response regulators. The arlS mutant formed a biofilm on a polystyrene surface unlike the parent strain and the complemented mutant. Biofilm formation was associated with increased primary adherence to polystyrene, whereas cellular adhesion was only slightly decreased. In addition, the arlS mutant exhibited increased autolysis and altered peptidoglycan hydrolase activity compared to the parental strain and to the complemented mutant. As it has been shown for coagulase-negative staphylococci that some autolysins are able to bind polymer surfaces, these data suggest that the two-component regulatory system ArlS-ArlR may control attachment to polymer surfaces by affecting secreted peptidoglycan hydrolase activity. Finally, the arlS mutant showed a dramatic decrease of extracellular proteolytic activity, including serine protease activity, in comparison to the wild-type strain and the complemented mutant, and cells grown in the presence of phenylmethylsulfonyl fluoride (a serine protease inhibitor) showed an increased autolysin activity. Since the locus arlR-arlS strikingly modifies extracellular proteolytic activity, this locus might also be involved in the virulence of S. aureus.  相似文献   

12.
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.  相似文献   

13.
Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.  相似文献   

14.
Moraxella catarrhalis isolates express lipooligosaccharide (LOS) molecules on their surface, which share epitopes similar to that of the Neisseria and Haemophilus species. These common LOS epitopes have been implicated in various steps of pathogenesis for the different organisms. In this study, a cluster of three LOS glycosyltransferase genes (lgt) were identified in M. catarrhalis 7169, a strain that produces a serotype B LOS. Mutants in these glycosyltransferase genes were constructed, and the resulting LOS phenotypes were consistent with varying degrees of truncation compared to wild-type LOS. The LOS structures of each lgt mutant were no longer detected by a monoclonal antibody (MAb 4G5) specific to a highly conserved terminal epitope nor by a monoclonal antibody (MAb 3F7) specific to the serotype B LOS side chain. Mass spectrometry of the LOS glycoforms assembled by two of these lgt mutants indicated that lgt1 encodes an alpha(1-2) glucosyltransferase and the lgt2 encodes a beta(1-4) galactosyltransferase. However, these structural studies could not delineate the function for lgt3. Therefore, M. catarrhalis lgt3 was introduced into a defined beta(1-4) glucosyltransferase Haemophilus ducreyi 35000glu- mutant in trans, and monoclonal antibody analysis confirmed that Lgt3 complemented the LOS defect. These data suggest that lgt3 encodes a glucosyltransferase involved in the addition of a beta(1-4)-linked glucose to the inner core. Furthermore, we conclude that this enzymatic step is essential for the assembly of the complete LOS glycoform expressed by M. catarrhalis 7169.  相似文献   

15.
TLR2 plays a role as a pattern-recognition receptor in the innate immune response involving secreted proteins against microbial pathogens. To examine its possible involvement in the cellular response, we determined the levels of the engulfment and subsequent killing of bacteria by macrophages prepared from TLR2-deficient and wild-type mice. The level of the engulfment of Staphylococcus aureus or Escherichia coli was almost the same between TLR2-lacking and wild-type macrophages. However, the colony-forming ability of engulfed S. aureus, but not of E. coli, decreased to a greater extent in TLR2-lacking macrophages than in the wild-type control. The incubation with S. aureus caused activation of JNK in wild-type macrophages but not in TLR2-lacking macrophages, and the pretreatment of wild-type macrophages with a JNK inhibitor increased the rate of killing of engulfed S. aureus, but again not of E. coli. In addition, the number of colonies formed by engulfed S. aureus increased in the JNK-dependent manner when TLR2-lacking macrophages were pretreated with LPS. Furthermore, JNK seemed to inhibit the generation of superoxide, not of NO, in macrophages. These results collectively suggested that the level of superoxide is reduced in macrophages that have engulfed S. aureus through the actions of TLR2-activated JNK, resulting in the prolonged survival of the bacterium in phagosomes. The same regulation did not influence the survival of E. coli, because this bacterium was more resistant to superoxide than S. aureus. We propose a novel bacterial strategy for survival in macrophages involving the hijacking of an innate immune receptor.  相似文献   

16.
Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.  相似文献   

17.
D-alanylation of lipoteichoic acid (LTA), allows Gram-positive bacteria to modulate their surface charge, regulate ligand binding and control the electromechanical properties of the cell wall. In this study, the role of D-alanyl LTA in the virulence of the extracellular pathogen Streptococcus agalactiae was investigated. We demonstrate that a DltA- isogenic mutant displays an increased susceptibility to host defence peptides such as human defensins and animal-derived cationic peptides. Accordingly, the mutant strain is more susceptible to killing by mice bone marrow-derived macrophages and human neutrophils than the wild-type strain. In addition, the virulence of the DltA- mutant is severely impaired in mouse and neonatal rat models. This mutant was eliminated more rapidly than the wild-type strain from the lung of three-week-old mice inoculated intranasally and, consequently, is unable to induce a pneumonia. Finally, after intravenous injection of three-week-old mice, the survival of the DltA- mutant is markedly reduced in the blood in comparison to that of the wild-type strain. We hypothesize that the decreased virulence of the DltA- mutant is a consequence of its increased susceptibility to cationic antimicrobial peptides and to killing by phagocytes. These results demonstrate that the D-alanylation of LTA contributes to the virulence of S. agalactiae.  相似文献   

18.
Staphylococcus aureus infection elicits through its mature lipoproteins an innate immune response by TLR2-MyD88 signaling, which improves bacterial clearing and disease outcome. The role of dendritic cells (DCs) and T cells in this immune activation and the function of T and B cells in defense against S. aureus infection remain unclear. Therefore, we first evaluated DC and T cell activation after infection with S. aureus wild type (WT) and its isogenic mutant, which is deficient in lipoprotein maturation, in vitro. Lipoproteins in viable S. aureus contributed via TLR2-MyD88 to activation of DCs, which promoted the release of IFN-γ and IL-17 in CD4(+) T cells. This strong effect was independent of superantigens and MHC class II. We next evaluated the function of T cells and their cytokines IFN-γ and IL-17 in infection in vivo. Six days after systemic murine infection IFN-γ, IL-17, and IL-10 production in total spleen cells were MyD88-dependent and their levels increased until day 21. The comparison of CD3(-/-), Rag2(-/-), and C57BL/6 mice after infection revealed that IFN-γ and IL-17 originated from T cells and IL-10 originated from innate immune cells. Furthermore, vaccination of mice to activate T and B cells did not improve eradication of S. aureus from organs. In conclusion, S. aureus enhances DC activation via TLR2-MyD88 and thereby promotes T(H)1 and T(H)17 cell differentiation. However, neither T cells and their MyD88-regulated products, IFN-γ and IL-17, nor B cells affected bacterial clearing from organs and disease outcome.  相似文献   

19.
In mammalian host cells staphylococcal peptidoglycan (PGN) is recognized by Nod2. Whether PGN is also recognized by TLR2 is disputed. Here we carried out PGN co-localization and stimulation studies with TLR2 and Nod2 in wild type and mutant host cells. To exclude contamination with lipoproteins, polymeric staphylococcal PGN (PGN(pol)) was isolated from Staphylococcus aureus Δlgt (lacking lipidated prelipoproteins). PGN(pol) was biotinylated (PGN-Bio) for fluorescence monitoring with specific antibodies. Keratinocytes from murine oral epithelium (MK) readily internalized PGN-Bio in an endocytosis-like process. In wt MK, PGN(pol) induced intracellular accumulation of Nod2 and TLR2 and co-localized with Nod2 and TLR2, but not with TLR4. In TLR2-deficient MK Nod2 and in Nod2-deficient MK TLR2 was induced, indicating that PGN(pol) recognition by Nod2 is independent of TLR2 and vice versa. In both mutants IL-6 and IL-1B release was decreased by approximately 50% compared to wt MK, suggesting that the immune responses induced by Nod2 and TLR2 are comparable and that the two receptors act additively in MK. In TLR2-transfected HEK293 cells PGN(pol) induced NFkB-promoter fused luciferase expression. To support the data, co-localization and signaling studies were carried out with SHL-PGN, a lipase protein covalently tethered to PGN-fragments of varying sizes at its C-terminus. SHL-PGN also co-localized with Nod2 or TLR2 and induced their accumulation, while SHL without PGN did not. The results show that staphylococcal PGN not only co-localizes with Nod2 but also with TLR2. PGN is able to stimulate the immune system via both receptors.  相似文献   

20.
Signaling by innate immune receptors initiates and orchestrates the overall immune responses to infection. Macrophage receptors recognizing pathogens can be broadly grouped into surface receptors and receptors restricted to intracellular compartments, such as phagosomes and the cytoplasm. There is an expectation that ingestion and degradation of microorganisms by phagocytes contributes to activation of intracellular innate receptors, although direct demonstrations of this are rare, and many model ligands are studied in soluble form, outside of their microbial context. By comparing a wild-type strain of Staphylococcus aureus and a lysozyme-sensitive mutant, we have been able directly to address the role of degradation of live bacteria by mouse macrophages in determining the overall innate cellular inflammatory response. Our investigations revealed a biphasic response to S. aureus that consisted of an initial signal resulting from the engagement of surface TLR2, followed by a later, second wave on inflammatory gene induction. This second wave of inflammatory signaling was dependent on and correlated with the timing of bacterial degradation in phagosomes. We found that TLR2 signaling followed by TLR2/TLR9 signaling enhanced sensitivity to small numbers of bacteria. We further found that treating wild-type bacteria with the peptidoglycan synthesis-inhibiting antibiotic vancomycin made S. aureus more susceptible to degradation and resulted in increased inflammatory responses, similar to those observed for mutant degradation-sensitive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号