首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
To make estimates of ventilation from measurements of body surface movements in unrestrained subjects, we measured changes in linear dimensions and cross-sectional areas of the rib cage (RC) and abdomen (AB) of six healthy unrestrained subjects during a variety of maneuvers. RC and AB anteroposterior diameters and abdominal length in the cephalocaudal axis (axial displacement) were measured with magnetometers, and RC and AB cross-sectional areas were measured with a respiratory inductance plethysmograph. Flow was measured at the mouth with a pneumotachograph and integrated electrically to give volume. Volume and body surface measurements were analyzed by multiple linear regression. Addition of the axial measurements to either the anteroposterior dimensions or cross-sectional areas of RC and AB improved estimates of tidal volume in all subjects (P less than 0.01). With measurements of axial displacement and cross-sectional area of the RC and AB, tidal volume could be reliably estimated to within 20% of actual ventilation. We conclude that measurement of axial displacements improves estimates of ventilation in unrestrained subjects.  相似文献   

2.
We compared simultaneous measurements of ventilatory movements obtained by a bellows pneumograph (BP) and a respiratory inductive plethysmograph (RIP) vs. integrated volume from a pneumotachograph in seven healthy volunteers during different respiratory patterns. The purpose of this study was to assess if a computer-aided calibration procedure could improve the accuracy of BP, a simple semiquantitative method for noninvasive ventilatory monitoring in supine subjects. Both devices were repeatedly calibrated against a pneumotachograph in the same posture with a computer-aided least-squares method. One calibration maneuver was sufficient to achieve a minimal relative difference in volume measurements between the RIP as well as the BP and the pneumotachograph of less than 1.2 +/- 4.5 (SD) %. The accuracy remained in this range during the subsequent calibrations with time (1 h) and after body movements. However, this difference increased significantly with both devices when the subjects were studied in the lateral decubitus position. The present study indicates that despite theoretical advantages of the RIP, the BP, when properly calibrated, has similar performances in supine subjects for monitoring ventilation; it is simpler and less expensive than the RIP and is devoid of electrical drift and artifacts.  相似文献   

3.
The pneumotachometer is currently the most accepted device to measure tidal breathing, however, it requires the use of a mouthpiece and thus alteration of spontaneous ventilation is implied. Respiratory inductive plethysmography (RIP), which includes two belts, one thoracic and one abdominal, is able to determine spontaneous tidal breathing without the use of a facemask or mouthpiece, however, there are a number of as yet unresolved issues. In this study we aimed to describe and validate a new RIP method, relying on a combination of thoracic RIP and nasal pressure signals taking into account that exercise-induced body movements can easily contaminate RIP thoracic signals by generating tissue motion artifacts. A custom-made time domain algorithm that relies on the elimination of low amplitude artifacts was applied to the raw thoracic RIP signal. Determining this tidal ventilation allowed comparisons between the RIP signal and simultaneously-recorded airflow signals from a calibrated pneumotachometer (PT). We assessed 206 comparisons from 30 volunteers who were asked to breathe spontaneously at rest and during walking on the spot. Comparisons between RIP signals processed by our algorithm and PT showed highly significant correlations for tidal volume (Vt), inspiratory (Ti) and expiratory times (Te). Moreover, bias calculated using the Bland and Altman method were reasonably low for Vt and Ti (0.04 L and 0.02 s, respectively), and acceptable for Te (<0.1 s) and the intercept from regression relationships (0.01 L, 0.06 s, 0.17 s respectively). The Ti/Ttot and Vt/Ti ratios obtained with the two methods were also statistically correlated. We conclude that our methodology (filtering by our algorithm and calibrating with our calibration procedure) for thoracic RIP renders this technique sufficiently accurate to evaluate tidal ventilation variation at rest and during mild to moderate physical activity.  相似文献   

4.
We describe a single-posture method for deriving the proportionality constant (K) between rib cage (RC) and abdominal (AB) amplifiers of the respiratory inductive plethysmograph (RIP). Qualitative diagnostic calibration (QDC) is based on equations of the isovolume maneuver calibration (ISOCAL) and is carried out during a 5-min period of natural breathing without using mouthpiece or mask. In this situation, K approximates the ratio of standard deviations (SD) of the uncalibrated changes of AB-to-RC volume deflections. Validity of calibration was evaluated by 1) analyzing RIP waveforms during an isovolume maneuver and 2) comparing changes of tidal volume (VT) amplitude and functional residual capacity (FRC) level measured by spirometry (SP) with RIP values. Comparisons of VT(RIP) to VT(SP) were also obtained in a variety of postures during natural (uninstructed) preferential RC and AB breathing and with voluntary changes of VT amplitude and FRC level. VT(RIP)-to-VT(SP) comparisons were equal to or closer than published reports for single posture, ISOCAL, multiple- and linear-regression procedures. QDC of RIP in supine posture with comparisons to SP in that posture and others showed better accuracy in horizontal than upright postures.  相似文献   

5.
A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).  相似文献   

6.
Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Sleep is associated with marked alterations in ventilatory control that lead to perturbations in respiratory timing, breathing pattern, ventilation, pharyngeal collapsibility, and sleep-related breathing disorders (SRBD). Mouse models offer powerful insight into the pathogenesis of SRBD; however, methods for obtaining the full complement of continuous, high-fidelity respiratory, electroencephalographic (EEG), and electromyographic (EMG) signals in unrestrained mice during sleep and wake have not been developed. We adapted whole body plethysmography to record EEG, EMG, and respiratory signals continuously in unrestrained, unanesthetized mice. Whole body plethysmography tidal volume and airflow signals and a novel noninvasive surrogate for respiratory effort (respiratory movement signal) were validated against simultaneously measured gold standard signals. Compared with the gold standard, we validated 1) tidal volume (correlation, R(2) = 0.87, P < 0.001; and agreement within 1%, P < 0.001); 2) inspiratory airflow (correlation, R(2) = 0.92, P < 0.001; agreement within 4%, P < 0.001); 3) expiratory airflow (correlation, R(2) = 0.83, P < 0.001); and 4) respiratory movement signal (correlation, R(2) = 0.79-0.84, P < 0.001). The expiratory airflow signal, however, demonstrated a decrease in amplitude compared with the gold standard. Integrating respiratory and EEG/EMG signals, we fully characterized sleep and breathing patterns in conscious, unrestrained mice and demonstrated inspiratory flow limitation in a New Zealand Obese mouse. Our approach will facilitate studies of SRBD mechanisms in inbred mouse strains and offer a powerful platform to investigate the effects of environmental and pharmacological exposures on breathing disturbances during sleep and wakefulness.  相似文献   

8.
The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.  相似文献   

9.
We wished to determine the severity of posthypoxic ventilatory decline in patients with sleep apnea relative to normal subjects during sleep. We studied 11 men with sleep apnea/hypopnea syndrome and 11 normal men during non-rapid eye movement sleep. We measured EEG, electrooculogram, arterial O(2) saturation, and end-tidal P(CO2). To maintain upper airway patency in patients with sleep apnea, nasal continuous positive pressure was applied at a level sufficient to eliminate apneas and hypopneas. We compared the prehypoxic control (C) with posthypoxic recovery breaths. Nadir minute ventilation in normal subjects was 6.3 +/- 0.5 l/min (83.8 +/- 5.7% of room air control) vs. 6.7 +/- 0.9 l/min, 69.1 +/- 8.5% of room air control in obstructive sleep apnea (OSA) patients; nadir minute ventilation (% of control) was lower in patients with OSA relative to normal subjects (P < 0.05). Nadir tidal volume was 0.55 +/- 0.05 liter (80.0 +/- 6.6% of room air control) in OSA patients vs. 0.42 +/- 0.03 liter, 86.5 +/- 5.2% of room air control in normal subjects. In addition, prolongation of expiratory time (Te) occurred in the recovery period. There was a significant difference in Te prolongation between normal subjects (2.61 +/- 0.3 s, 120 +/- 11.2% of C) and OSA patients (5.6 +/- 1.5 s, 292 +/- 127.6% of C) (P < 0.006). In conclusion, 1) posthypoxic ventilatory decline occurred after termination of hypocapnic hypoxia in normal subjects and patients with sleep apnea and manifested as decreased tidal volume and prolongation of Te; and 2) posthypoxic ventilatory prolongation of Te was more pronounced in patients with sleep apnea relative to normal subjects.  相似文献   

10.
In infants under the age of 6 mo respiratory inductive plethysmograph (RIP)-calculated tidal volumes (VT) were compared with simultaneously measured volumes using a pneumotachograph (PNT) to 1) assess whether using multiple points (MP) along the inspiratory profile of a breath is superior to using only VT when calculating volume-motion (VM) coefficients, 2) verify the assumption of independent contributions of the abdomen and rib cage to VT, which was accomplished by extending the normal RIP model to include a term representing interaction between these two compartments, and 3) investigate whether VM coefficients are sleep-state dependent. Neither use of multiple points nor inclusion of the interacting term improved the performance of the RIP over that observed using a simple two-compartment model with VT measurements. However, VM coefficients obtained during quiet sleep (QS) were not reliable when used during rapid-eye-movement (REM) sleep, suggesting that coefficients obtained during one sleep state may not be applicable to another state where there is a substantial change in the relative abdominal/rib cage contributions to VT.  相似文献   

11.
It has been hypothesized that regulatory control in the respiratory system is state dependent. According to this view respiratory instability during sleep onset is a consequence of repeated fluctuations in arousal state. However, these speculations are based primarily on measurements during stable sleep, not during sleep onset itself. The aim of the present study was to assess changes in ventilation and gas tensions during sleep onset as a function of arousal state. Twenty-one subjects (12 males and 9 females, mean age 20 yr) were assessed over an average of 11.3 sleep onsets. The subject's state was classified as alpha, theta, body movement, or stage 2 sleep, and expiratory tidal volume, minute ventilation, respiratory rate, and end-tidal CO2 and O2 were measured by means of a face mask, valve, and pneumotachograph on a breath-by-breath basis. Respiratory instability during sleep onset was found to be a result of two factors. The first factor was a between-state effect in which transitions from alpha to theta were associated with falls, and from theta to alpha with increases, in ventilation. The magnitude of the change was a positive function of metabolic drive at the time of the state change (as indicated by alveolar PCO2 and PO2 levels). The second was a within-state effect in which ventilation fell during consecutive alpha breaths and increased during consecutive theta breaths. These changes were due to the influence of the relative hyperventilation of the alpha state and the relative hypoventilation of the theta state on metabolic drive.  相似文献   

12.
Altered breathing pattern is an aspect of dysfunctional breathing but few standardised techniques exist to evaluate it. This study investigates a technique for evaluating and quantifying breathing pattern, called the Manual Assessment of Respiratory Motion (MARM) and compares it to measures performed with Respiratory Induction Plethysmography (RIP). About 12 subjects altered their breathing and posture while 2 examiners assessed their breathing using the MARM. Simultaneous measurements with RIP were taken. Inter-examiner agreement and agreement between MARM and RIP were assessed. The ability of the measurement methods to differentiate between diverse breathing and postural patterns was compared. High levels of agreement between examiners were found with the MARM for measures of the upper rib cage relative to lower rib cage/abdomen motion during breathing but not for measures of volume. The measures of upper rib cage dominance during breathing correlated with similar measures obtained from RIP. Both RIP and MARM measures methods were able to differentiate between abdominal and thoracic breathing patterns, but only MARM was able to differentiate between breathing changes occurring as result of slumped versus erect sitting posture. This study suggests that the MARM is a reliable clinical tool for assessing breathing pattern.  相似文献   

13.
In the neonatal period, respiratory distortion of the chest wall in active sleep has been reported to reduce the thoracic gas volume. In order to investigate whether the distortion influences the tidal volume, a thorough quantification of the phase differences between the movements of the chest wall and the abdominal wall and the relation of the phase differences to the ventilation was performed on fifteen newborn infants sleeping in prone position. The changes in the circumference of the chest and abdomen were measured with mercury-in-silastic strain gauges; nasal air flow was monitored with a pneumotachograph. During quiet sleep, the movements of the chest wall and the abdominal wall were congruent and regular, and the tidal volume was not dependent on the observed phase differences between them. In active sleep, the breathing movements were incongruent, the tidal volume was negatively correlated with the phase shift between the movements of the chest wall and the abdominal wall, and the mean inspiratory flow was increased. Ventilation (ml/min) did not differ between the sleep states. This study thus suggests that, in healthy newborns in active sleep, the chest wall distortion leads to a reduction of the tidal volume, but ventilation is upheld by compensatory mechanisms, i.e. increased breathing rate and increased amplitude of movements of the diaphragm.  相似文献   

14.
Chest wall distortion (inward motion of the rib cage on inspiration) has been found recently to reduce the tidal volume during active sleep in the neonatal period. To determine some of the factors that relate to the chest wall distortion and the decreased tidal volume seen in active sleep, a quantification of the phase differences between the movements of the chest wall and those of the abdominal wall, and of the relation of their phase differences to tidal volume was performed on data obtained before and during carbon dioxide stimulation in 15 newborn infants sleeping in the prone position. In quiet sleep, the breathing movements were congruent and regular, and the tidal volume and the mean inspiratory flow increased during carbon dioxide stimulation. In active sleep during exposure to carbon dioxide, the chest wall distortion decreased, the breathing movements were incongruent and the degree of the chest wall distortion was negatively correlated with the tidal volume, while the tidal volume and the mean inspiratory flow was increased. Chest wall distortion did not appear in quiet sleep and was decreased in active sleep in spite of increased ventilation during CO2 stimulation. This study favours the idea that chest wall distortion is caused by a well regulated change in neuromuscular activity and not by the strength of diaphragmatic movements overcoming the mechanical stability of the rib cage.  相似文献   

15.
To assess the effect of sleep on airflow resistance and patterns of ventilation in asthmatic patients with nocturnal worsening, 10 adult subjects (6 asthmatic patients with nocturnal worsening, 4 normal controls) were monitored overnight in the sleep laboratory on two separate occasions. During 1 night, subjects were allowed to sleep normally, whereas during the other night all sleep was prevented. The six asthmatic patients demonstrated progressive increases in lower airway resistance (Rla) on both nights, but the rate of increase was twofold greater (P less than 0.0001) during the sleep night compared with the sleep prevention night. However, overnight decrements in forced expired volume in 1 s (FEV1) were similar over the 2 nights. The asthmatic patients maintained their minute ventilation as Rla increased during sleep, demonstrating a stable tidal volume with a mild increase in respiratory frequency. We conclude that in asthmatic patients with nocturnal worsening 1) Rla increases and FEV1 falls overnight regardless of sleep state, 2) sleep enhances the observed overnight increases in Rla, and 3) sleep does not abolish compensatory ventilatory responses to spontaneously occurring bronchoconstriction.  相似文献   

16.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

17.
Several investigators have observed that irregular breathing occurs during rapid-eye-movement (REM) sleep in healthy subjects, with ventilatory suppression being prominent during active eye movements [phasic REM (PREM) sleep] as opposed to tonic REM (TREM) sleep, when ocular activity is absent and ventilation more regular. Inasmuch as considerable data suggest that rapid eye movements are a manifestation of sleep-induced neural events that may importantly influence respiratory neurons, we hypothesized that upper airway dilator muscle activation may also be suppressed during periods of active eye movements in REM sleep. We studied six normal men during single nocturnal sleep studies. Standard sleep-staging parameters, ventilation, and genioglossus and alae nasi electromyograms (EMG) were continuously recorded during the study. There were no significant differences in minute ventilation, tidal volume, or any index of genioglossus or alae nasi EMG amplitude between non-REM (NREM) and REM sleep, when REM was analyzed as a single sleep stage. Each breath during REM sleep was scored as "phasic" or "tonic," depending on its proximity to REM deflections on the electrooculogram. Comparison of all three sleep states (NREM, PREM, and TREM) revealed that peak inspiratory genioglossus and alae nasi EMG activities were significantly decreased during PREM sleep compared with TREM sleep [genioglossus (arbitrary units): NREM 49 +/- 12 (mean +/- SE), TREM 49 +/- 5, PREM 20 +/- 5 (P less than 0.05, PREM different from TREM and NREM); alae nasi: NREM 16 +/- 4, TREM 38 +/- 7, PREM 10 +/- 4 (P less than 0.05, PREM different from TREM)]. We also observed, as have others, that ventilation, tidal volume, and mean inspiratory airflow were significantly decreased and respiratory frequency was increased during PREM sleep compared with both TREM and NREM sleep. We conclude that hypoventilation occurs in concert with reduced upper airway dilator muscle activation during PREM sleep by mechanisms that remain to be established.  相似文献   

18.
Although total respiratory compliance (Crs) has been shown to fall in adults on induction of halothane anesthesia, no successful paired studies have been reported in children. The multiple occlusion technique was used to measure Crs in 17 infants and young children during sedated sleep (CrsS) and shortly after, following induction of halothane anesthesia (CrsA). Crs fell in all but one infant after induction of anesthesia, with a mean fall of 34.7% (range 0-58%). This was accompanied by a reduction in tidal volume and increase in frequency in every case. In 7 of the 17 children, who were to be paralyzed for surgical purposes, Crs was also measured in this anesthetized-paralyzed state. When tidal volume administered during manual ventilation was similar to that observed during measurement of CrsA, Crs during this low-volume ventilation was similar to CrsA. When tidal volume was increased and Crs remeasured, there was a significant increase in every case, with the high-volume Crs within 10% of CrsS in all but one child, in whom there was a 31.4% increase with respect to CrsS. Changes in tidal volume accounted for approximately 50% of the variability in each state. These results demonstrate a highly significant fall in Crs in infants and young children after induction of halothane anesthesia. In addition it appears that this reduction in Crs can be reversed by paralyzing the child and manually ventilating with tidal volumes approximating those seen during sedation.  相似文献   

19.
Ventilation during sleep onset   总被引:1,自引:0,他引:1  
There is now considerable evidence which indicates that respiratory activity is different during sleep compared with wakefulness. However, there has been little work on respiratory changes during the transitional period from wakefulness to sleep. The present study was concerned with the quantitative and temporal properties of ventilation during sleep onset. Sleep onsets were studied in five young male adults in a series of single-subject designs in which sleep onsets were replications. The results indicated that during sleep onset the loss of alpha-activity in the electroencephalogram was associated with a substantial, rapid, and highly predictable reduction in ventilation. The change in ventilation was typically due to a reduction in tidal volume and was, in part, secondary to a reduction in metabolic rate. We speculate that the nonmetabolic component may reflect the loss of waking neural drive to respiration, though the present study did not eliminate a variety of other interpretations.  相似文献   

20.
Evidence of the Hering-Breuer reflex has been found in humans during anesthesia and sleep but not during wakefulness. Cortical influences, present during wakefulness, may mask the effects of this reflex in awake humans. We hypothesized that, if lung volume were increased in awake subjects unaware of the stimulus, vagal feedback would modulate breathing on a breath-to-breath basis. To test this hypothesis, we employed proportional assist ventilation in a pseudorandom sequence to unload the respiratory system above and below the perceptual threshold in 17 normal subjects. Tidal volume, integrated respiratory muscle pressure per breath, and inspiratory time were recorded. Both sub- and suprathreshold stimulation evoked a significant increase in tidal volume and inspiratory flow rate, but a significant decrease in inspiratory time was present only during the application of a subthreshold stimulus. We conclude that vagal feedback modulates respiratory timing on a breath-by-breath basis in awake humans, as long as there is no awareness of the stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号