首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pronase and/or SDS pretreatment on Na+-Ca2+ exchange were studied in rat brain microsomal membranes. Pronase in concentrations that liberated 11% of the membrane proteins stimulated the Na+-Ca2+ exchange. When about 24% of the proteins were split off, the results did not differ from those in control experiments. When 40% or more of the proteins were solubilized, Na+-Ca2+ exchange was abolished. Pronase pretreatment did not change the Km value for Ca2+, it increased Vmax only. The effect of pronase was partially blocked by Trasylol. Neuraminidase had no effect on Na+-Ca2+ exchange. SDS pretreatment of the membranes inhibited Na+-Ca2+ exchange: when 25% of membrane proteins were solubilized with SDS, the Na+-Ca2+ exchange was abolished while the same amount of proteins split off with pronase did not change the rate of Na+-Ca2+ exchange as related to membrane proteins. Ischaemia lasting for 2-4 h or complete hypoxia which should stimulate endogenous proteinases due to the rise of free intracellular calcium did not influence the Na+-Ca2+ exchange. A decrease in Na+-Ca2+ exchange rate was observed when proteins with molecular weight between 45,000 and 20,000 were split off from the membranes. It is assumed that the Na+-Ca2+ antiporter is a polypeptide from the group of proteins within the above molecular weights.  相似文献   

2.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

3.
The role of dibutyryl 3',5'-cyclic adenosine monophosphate (dibutyryl cAMP) as putative second messenger for parathyroid hormone (PTH) in regulating canine proximal tubular basolateral membrane Na+-Ca2+ exchange and passive calcium permeability was assessed, as was the nature of this passive calcium permeability. Dibutyryl cAMP (50 mg) infused in vivo over 30 min increased fractional phosphate excretion from 4.9 +/- 1.8% to 20.5 +/- 4.6%, P less than 0.05, n = 6, but had no effect on either passive Ca2+ efflux or sodium-stimulated Ca2+ efflux from Ca2+-preloaded basolateral membrane vesicles (BLMV). Both of these mechanisms have been previously shown to be stimulated by PTH. Further studies were performed to investigate the mechanism of the passive calcium flux. Calcium uptake by BLMV was blocked by lanthanum (La3+) but not by the calcium-channel blocker verapamil. La3+ blocked efflux of Ca2+ from preloaded vesicles when it was placed in the external solution. This La3+-blockable efflux was larger in potassium equivalent BLMV prepared from normal dogs than in BLMV prepared from thyroparathyroidectomized dogs. Benzamil produced 50% inhibition of sodium-stimulated Ca2+ uptake at 250 microM whereas neither amiloride nor diltiazem achieved 50% inhibition at the maximal doses studied. Benzamil, 1 mM, had no effect on passive calcium efflux and neither did the substitution of sucrose for potassium, which has been shown to affect Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. This suggests that the calcium flux under potassium equivalent conditions was not mediated by Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. These results demonstrate that the basolateral membrane of proximal tubular cells possesses both a Na+-Ca2+ exchanger inhibitable by benzamil and a passive calcium permeability not inhibited by benzamil nor by verapamil but by La3+. Neither of these two mechanisms of calcium flux was affected by dibutyryl cAMP whereas both have been shown to be stimulated by PTH.  相似文献   

4.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

5.
Proteins with Na+-Ca2+ exchange activity from the soluble fraction of crayfish striated muscle were inserted into asolectin proteoliposomes. A pH dependent calcium uptake with an optimum at the alkaline side and inhibition in the presence of sodium or strontium ions in the external medium was observed. When expressed per tissue wet weight the capacity for Na+-Ca2+ exchange of proteoliposomes with inserted soluble proteins was by one half higher than that of the membrane fraction and more than twice higher in comparison with the reconstituted membrane bound exchanger. Using polyacrylamide gel electrophoresis two most prominent proteins with Mr over 200 and 43 kDa could be detected in proteoliposomes with the highest Na+-Ca2+ exchange. It is assumed that protein(s) with Mr 43 kDa could represent the soluble Na+-Ca2+ exchanger in crayfish striated muscle soluble fraction.  相似文献   

6.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

7.
Na+-Ca2+ exchange activity in cardiac sarcolemmal vesicles is known to be sensitive to charged, membrane lipid components. To examine the interactions between membrane components and the exchanger in more detail, we have solubilized and reconstituted the Na+-Ca2+ exchanger into membranes of defined lipid composition. Our results indicate that optimal Na+-Ca2+ exchange activity requires the presence of certain anionic phospholipids. In particular, phosphatidylserine (PS), cardiolipin, or phosphatidic acid at 50% by weight results in high Na+-Ca2+ exchange activity, whereas phosphatidylinositol and phosphatidylglycerol provide a poor environment for exchange. In addition, incorporation of cholesterol at 20% by weight greatly facilitates Na+-Ca2+ exchange activity. Thus, for example, an optimal lipid environment for Na+-Ca2+ exchange is phosphatidylcholine (PC, 30%)/PS (50%)/cholesterol (20%). Na+-Ca2+ exchange activity is also high when cardiac sarcolemma is solubilized and then reconstituted into asolectin liposomes. We fractionated the lipids of asolectin into subclasses for further reconstitution studies. When sarcolemma is reconstituted into vesicles formed from the phospholipid component of asolectin, Na+-Ca2+ exchange activity is low. When the neutral lipid fraction of asolectin (including sterols) is also included in the reconstitution medium, Na+-Ca2+ exchange activity is greatly stimulated. This result is consistent with the requirement for cholesterol described above. Proteinase treatment, high pH, intravesicular Ca2+ and dodecyl sulfate all stimulate Na+-Ca2+ exchange in native sarcolemmal vesicles. We examined the effects of these interventions on exchange activity in reconstituted vesicles of varying lipid composition. In general, Na+-Ca2+ exchange could be stimulated only when reconstituted into vesicles of a suboptimal lipid composition. That is, when reconstituted into asolectin or PC/PS/cholesterol (30:50:20), the exchanger is already in an activated state and can no longer be stimulated. The one exception was that the Na+-Ca2+ exchanger responded to altered pH in an identical manner, independent of vesicle lipid composition. The mechanism of action of altered pH on the exchanger thus appears to be different from other interventions.  相似文献   

8.
We have examined the effect of membrane methylation on the Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles using S-adenosyl-L-methionine as methyl donor. Methylation leads to approximately 40% inhibition of the initial rate of Nai+-dependent Ca2+ uptake. The inhibition is due to a lowering of the Vmax for the reaction. The inhibition is not due to an effect on membrane permeability and is blocked by S-adenosyl-L-homocysteine, an inhibitor of methylation reactions. The following experiments indicated that inhibition of Na+-Ca2+ exchange was due to methylation of membrane protein and not due to methylated phosphatidylethanolamine (PE) compounds (i.e., phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N'-dimethylethanolamine (PDME]: (1) We solubilized sarcolemma and reconstituted activity into vesicles containing no PE. The inhibition by S-adenosyl-L-methionine was not diminished in this environment. (2) We reconstituted sarcolemma into vesicles containing PMME or PDME. These methylated lipid components had no effect on Na+-Ca2+ exchange activity. (3) We verified that many membrane proteins, probably including the exchanger, become methylated.  相似文献   

9.
An analysis of the methodological approaches, that used for investigation of Na+-Ca2+ exchange through the plasma membrane of exciting and secretory cells was presented in this review. Special attention is devoted to identification of Na+-Ca2+ exchange in the model for investigation of Ca2+ transporting systems of secretory cells - salivary glands of Chironomus plumosus L. larvae. With the aim different methods were used: researching of voltage-activated Ca2+-current depending on sodium gradient; studying of changes in the response of secretory glands, incubated in hypo- and hypersodium mediums, and Ca2+ content in their tissues; registration of Na+-Ca2+ exchange current in response to membrane hyper- or depolarisation changes of the membrane potential. And the current dependence on sodium and calcium ion gradient was also studied.  相似文献   

10.
Saponins can both permeabilize cell plasma membranes and cause positive inotropic effects in isolated cardiac muscles. Different saponins vary in their relative abilities to cause each effect suggesting that different mechanisms of action may be involved. To investigate this possibility, we have compared the effects of seven different saponins on the passive Ca2+ permeability and Na+-Ca2+ exchange activity of isolated canine cardiac sarcolemmal membranes. Saponins having hemolytic activity reversibly increased the passive efflux of Ca2+ from sarcolemmal vesicles preloaded with 45Ca2+ with the following order of potency: echinoside-A greater than echinoside-B greater than holothurin-A greater than holothurin-B greater than sakuraso-saponin. Ginsenoside-Rd and desacyl-jego-saponin, which lack hemolytic activity, had no significant effect on this variable. The saponins also stimulated Na+-Ca2+ exchange activity measured as Na+-dependent Ca2+ uptake by sarcolemmal vesicles. Ginsenoside-Rd and desacyl-jego-seponin, which did not affect passive Ca2+ permeability, stimulated the uptake, while in contrast, echinoside-A and -B only slightly increased or decreased this latter variable. Thus, the abilities of these compounds to enhance Na+-Ca2+ exchange activity seem to be inversely related to their abilities to increase the Ca2+ permeability. Effects by the echinosides on Na+-Ca2+ exchange may be masked by the loss of Ca2+ from the vesicles due to the increased permeability. These results suggest that the saponins interact with membrane constituent(s) that can influence the passive Ca2+ permeability and the Na+-Ca2+ exchange activity of cardiac sarcolemmal membranes.  相似文献   

11.
Na+-Ca2+ exchange rates and some physico-chemical properties of the exchanger were studied in crayfish striated muscle membranes enriched in plasma membranes prepared by differential centrifugation of muscle microsomal fraction on discontinuous sucrose density gradient. The lightest subfraction with the highest Na+, K+-ATPase and Mg2+-ATPase activities also showed the highest Na+-Ca2+ exchange rates. A number of physico-chemical characteristics of the Na+-Ca2+ exchanger found in the present experiments were similar to those reported for excitable membranes of mammals, except for the temperature optimum (20 degrees C for the crayfish).  相似文献   

12.
Kyotorphin (Tyr-Arg) at 1 to 100 microM increased the intracellular [Ca2+]i, determined with Quin-II in the slice and the entry of 45Ca2+ entry into synaptosomes of the lower brain stem of the rat. These effects were not antagonized by nifedipine nor verapamil. However, since this dipeptide caused no changes on the membrane potentials of the synaptosomes, measured with Rhodamine 6G, it is suggested that the kyotorphin-induced increase in the [Ca2+]i may be due not to effects on the voltage dependent Ca2+ channels and Na+-Ca2+ exchange mechanisms caused by the changes of the membrane potentials, but to the specific receptor (kyotorphin receptor)-mediated mechanisms.  相似文献   

13.
Opiate agonists and antagonists inhibit Na(+)-Ca2+ exchange in the isolated cardiac sarcolemma vesicles. Non-opioid stereoisomers (dextrorphan, Mr 1542MS, WIN 44,441-3) display effects similar to their opioid isomers (levorphanol, Mr 1543MS, WIN 44,441-2) suggesting that inhibition is not mediated by opiate receptors. Naloxone (permeable) and methylnaloxone (impermeable) inhibit the Na(+)-Ca2+ exchange similarly, suggesting an extravesicular location of inhibitory site. The inhibitory potency of naloxone is pH-independent in the range of 7.4-9.1, suggesting that the charge-carrying properties of drug-protein interactions are not altered under the tested conditions. Opiates display similar dose-response relationships for Na(+)-Ca2+ exchange and its partial reaction, the Ca(2+)-Ca2+ exchange. The opiate-induced inhibition is complete and noncompetitive in regard to extravesicular calcium. These data suggest that opiates do not bind to the Ca(2+)-binding domain (A-site), but they may interest either with the Na(+)-binding site (B-site) or with a putative opiate-binding site, presumably located outside of the ion-binding vicinity. Further studies on structure-activity relationship might lead to the discovery of potent and more specific inhibitors of cardiac Na(+)-Ca2+ exchanger. A possible relevance of these findings to some non-opioid pharmacological effects of naloxone on the cardiac muscle is suggested.  相似文献   

14.
High Na+ + Ca2+ exchange rates comparable with those reported for crayfish striated muscle, rat heart and rat brain, were observed in locust striated muscle homogenates and membrane preparations. The Na(+)-Ca2+ exchange followed the 1st order kinetics with a Km value of 18 mumol.l-1 for Ca, the pH optimum was at 8, the temperature optimum at 30 degrees C, and the exchange was inhibited in the presence of sodium in the incubation medium, with a KiNa of approx. 25 mmol.l-1. The present results suggest a high Na(+)-Ca2+ exchange in locust striated muscles which operate on the calcium electrogenesis principle.  相似文献   

15.
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.  相似文献   

16.
Ciliates possess diverse Ca2+ homeostasis systems, but little is known about the occurrence of a Na(+)-Ca2+ exchanger. We studied Na(+)-Ca2+ exchange in the ciliate Euplotes crassus by digital imaging. Cells were loaded with fura-2/AM or SBF1/AM for fluorescence measurements of cytosolic Ca2+ and Na+ respectively. Ouabain pre-treatment and Na+o substitution in fura-2/AM-loaded cells elicited a bepridil-sensitive [Ca2+]i rise followed by partial recovery, indicating the occurrence of Na(+)-Ca2+ exchanger working in reverse mode. In experiments on prolonged effects, ouabain, Na+o substitution, and bepridil all caused Ca2+o-dependent [Ca2+]i increase, showing a role for Na(+)-Ca2+ exchange in Ca2+ homeostasis. In addition, by comparing the effect of orthovanadate (affecting not only Ca2+ ATPase, but also Na(+)-K+ ATPase and, hence, Na(+)-Ca2+ exchange) to that of bepridil on [Ca2+]i, it was shown that Na(+)-Ca2+ exchange contributes to Ca2+ homeostasis. In electrophysiological experiments, no membrane potential variation was observed after bepridil treatment suggesting compensatory mechanisms for ion effects on cell membrane voltage, which also agrees with membrane potential stability after ouabain treatment. In conclusion, data indicate the presence of a Na(+)-Ca2+ exchanger in the plasma membrane of E. crassus, which is essential for Ca2+ homeostasis, but could also promote Ca2+ entry under specific conditions.  相似文献   

17.
The purpose of this study was to examine the effect of epidermal growth factor (EGF) on cardiac function and to explore ionic mechanisms as potential explanations for EGF-induced changes in cardiac contractile frequency. Cardiac cell aggregates were prepared from 7-day-old chick embryo hearts and were maintained in culture. EGF over a concentration range of 5 to 20 ng/ml produced a dose-dependent increase in cardiac contractile frequency. Inhibition of Na(+)-H+ exchange by amiloride antagonized the action of EGF. Inhibition of Na(+)-Ca2+ exchange by dichlorobenzamil prevented the effects of EGF. Inhibition of voltage-dependent calcium influx by diltiazem also antagonized the effect of EGF. The positive chronotropic action of EGF was significantly enhanced when the concentration of Na+ or Ca2+ was increased in the medium. These data indicate that EGF has a definite dose-dependent effect on the cardiac contractile frequency that is operative through ionic transport mechanisms that include increased calcium entry through voltage-dependent calcium channels and stimulation of Na(+)-H+ and Na(+)-Ca2+ exchange. The similarity in the effects of inhibition of these three ionic mechanisms suggests they are interrelated so that interference at any step in the process inhibits the action of EGF on cardiac myocytes.  相似文献   

18.
The modulation of rat brain Na(+)-Ca2+ exchange by K+   总被引:1,自引:0,他引:1  
The involvement of potassium ions in the Na(+)-Ca2+ exchange process was studied in rat brain synaptic plasma membrane (SPM) vesicles. Addition of equimolar [K+] to the intravesicular and the extravesicular medium led to a stimulation of the Na+ gradient-dependent Ca2+ influx; this stimulation was noticeable already at 0.5 mM and reached its maximum at 2 mM K+. The magnitude of the K+ stimulation was between 1.3-2.5-fold in different SPM preparations. K+ ions also stimulated the Na(+)-dependent Ca2+ efflux. K+ stimulation of Na(+)-Ca2+ exchange is of considerable specificity, since it is not mimicked by either Li+ or H+. The following lines of evidence suggest that K+ modulation of Na(+)-Ca2+ exchange involves the catalytic moiety of the transporter itself and not an unrelated K+ channel which modulates the membrane potential. 1) K+ stimulation of the transport process was conserved following reconstitution of the transporter into phospholipid-rich liposomes, an experimental condition which presumably separates the native membrane proteins among different vesicular structures. 2) K+ stimulation of Na+ gradient-dependent Ca2+ influx persists also when the build up of negative inside membrane potential is prevented by addition of carbonyl cyanide p-trifluoromethoxy phenylhydrazone which renders the membrane highly permeable to protons both in the native and the reconstituted preparation. 3) K+ stimulation of Na+ gradient-dependent Ca2+ influx is obtained also when tetraethylammonium chloride, 2,3-diaminopyridine and Cs+ are added to the Ca2+ uptake medium. Reconstituted SPM vesicles take up 86Rb+ in response to activation of Na+ gradient-dependent Ca2+ influx. The ratio of Ca2+ taken up by SPM vesicles in a Na+ gradient-dependent manner to the corresponding amounts of Rb+ taken up varies between 8-5 in different SPM preparations. If the stoichiometry of the process is 1 Rb+/1 Ca2+, then Rb+ cotransport is mediated by 10-20% of the transporters present in the preparation.  相似文献   

19.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

20.
Experiments are described demonstrating that Na(+)-Ca2+ exchange of retinal rod disc membrane is highly sensitive to light. The Na(+)-Ca2+ exchanger was shown to possess two types of binding sites with different affinities for calcium. The low affinity binding sites (KCaD = 5.8 mumol/l) are light-insensitive. After bleaching, KD of the high affinity Ca2(+)-binding sites an Ki for Na+ changed from 0.2 to 0.3 mumol/l and from 3.2 to 0.7 nmol/l, respectively. Light inhibits the steady-state Ca2+ uptake by a factor of 1.5. Photocontrol of the Na(+)-Ca2+ exchanger affinity is observed at the physiological level of rhodopsin bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号