首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that the activation level of AMP-dependent protein kinase AMPK is elevated in cancer cell lines as a hallmark of their transformed state. In OVCAR3 and A431 cells, c-Src signals through protein kinase Cα, phospholipase Cγ, and LKB1 to AMPK. AMPK controls internal ribosome entry site (IRES) dependent translation in these cells. We suggest that AMPK activation via PKC might be a general mechanism to regulate IRES-dependent translation in cancer cells.  相似文献   

2.
One of the most common molecular changes in cancer is the increased endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype. Previous efforts to control oncogenic lipogenesis have been focused on pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in culture and in mouse models, these inhibitors are nonselective blockers of lipid synthesis in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is important to identify the mechanism governing hyperactive lipogenesis in malignant cells. In this study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-like mediator present at high levels in ascites of ovarian cancer patients, regulates the sterol regulatory element binding protein-FAS and AMP-activated protein kinase-ACC pathways in ovarian cancer cells but not in normal or immortalized ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA(2), an LPA receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of LPA(2), the G(12/13) and G(q) signaling cascades mediate LPA-dependent sterol regulatory element-binding protein activation and AMP-activated protein kinase inhibition, respectively. Moreover, inhibition of de novo lipid synthesis dramatically attenuated LPA-induced cell proliferation. These results demonstrate that LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, which can be exploited for development of new anti-cancer therapies.  相似文献   

3.
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.  相似文献   

4.
Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway.  相似文献   

5.
Defective clearance of apoptotic cells is frequently associated with perpetuation of inflammatory conditions. Our results show a rapid activation of AMP-activated kinase (AMPK) in macrophages upon exposure to apoptotic cells or lysophosphatidylcholine, a specific phospholipid that is produced and released from dying cells. AMPK activation resulted from inhibition of mitochondrial oxygen consumption and ATP production and further depended on Ca2+ mobilization and mitochondrial reactive oxygen species generation. Once activated, AMPK increased microtubule synthesis and chemokinesis and provided adaptation to energy demand during tracking and engulfment. Uptake of apoptotic cells was increased in lungs of mice that received lysophosphatidylcholine. Furthermore, inhibition of AMPK diminished clearance of apoptotic thymocytes in vitro and in dexamethasone-treated mice. Taken together, we conclude that the mitochondrial AMPK axis is a sensor and enhancer of tracking and removal of apoptotic cell, processes crucial to resolution of inflammatory conditions and a return to tissue homeostasis.  相似文献   

6.
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; it is inhibited under obese conditions and is activated by exercise and by many anti-diabetic drugs. Emerging evidence also suggests that AMPK regulates cell differentiation, but the underlying mechanisms are unclear. We hypothesized that AMPK regulates cell differentiation via altering β-catenin expression, which involves phosphorylation of class IIa histone deacetylase 5 (HDAC5). In both C3H10T1/2 cells and mouse embryonic fibroblasts (MEFs), AMPK activity was positively correlated with β-catenin content. Chemical inhibition of HDAC5 increased β-catenin mRNA expression. HDAC5 overexpression reduced and HDAC5 knockdown increased H3K9 acetylation and cellular β-catenin content. HDAC5 formed a complex with myocyte enhancer factor-2 to down-regulate β-catenin mRNA expression. AMPK phosphorylated HDAC5, which promoted HDAC5 exportation from the nucleus; mutation of two phosphorylation sites in HDAC5, Ser-259 and -498, abolished the regulatory role of AMPK on β-catenin expression. In conclusion, AMPK promotes β-catenin expression through phosphorylation of HDAC5, which reduces HDAC5 interaction with the β-catenin promoter via myocyte enhancer factor-2. Thus, the data indicate that AMPK regulates cell differentiation and development via cross-talk with the wingless and Int (Wnt)/β-catenin signaling pathway.  相似文献   

7.
AMP-activated protein kinase (AMPK), an evolutionarily conserved serine-threonine kinase that senses cellular energy status, is activated by stress and neurohumoral stimuli. We investigated the mechanisms by which adrenergic signaling alters AMPK activation in vivo. Brown adipose tissue (BAT) is highly enriched in sympathetic innervation, which is critical for regulation of energy homeostasis. We performed unilateral denervation of BAT in wild type (WT) mice to abolish neural input. Six days post-denervation, UCP-1 protein levels and AMPK α2 protein and activity were reduced by 45%. In β(1,2,3)-adrenergic receptor knock-out mice, unilateral denervation led to a 25-45% decrease in AMPK activity, protein expression, and Thr(172) phosphorylation. In contrast, acute α- or β-adrenergic blockade in WT mice resulted in increased AMPK α Thr(172) phosphorylation and AMPK α1 and α2 activity in BAT. But short term blockade of α-adrenergic signaling in β(1,2,3)-adrenergic receptor knock-out mice resulted in decreased AMPK activity in BAT, which strongly correlated with enhanced phosphorylation of AMPK on Ser(485/491), a site associated with inhibition of AMPK activity. Both PKA and AKT inhibitors attenuated AMPK Ser(485/491) phosphorylation resulting from α-adrenergic blockade and prevented decreases in AMPK activity. In vitro mechanistic studies in BAT explants showed that the effects of α-adrenergic blockade appeared to be secondary to inhibition of oxygen consumption. In conclusion, adrenergic pathways regulate AMPK activity in vivo acutely via alterations in Thr(172) phosphorylation and chronically through changes in the α catalytic subunit protein levels. Furthermore, AMPK α Ser(485/491) phosphorylation may be a novel mechanism to inhibit AMPK activity in vivo and alter its biological effects.  相似文献   

8.
This study was undertaken to interrogate cancer cell survival during long-term hypoxic stress. Two systems with relevance to carcinogenesis were employed: Fully transformed BJ cells and a renal carcinoma cell line (786-0). The dynamic of AMPK activity was consistent with a prosurvival role during chronic hypoxia. This was further supported by the effects of AMPK agonists and antagonists (AICAR and compound C). Expression of a dominant-negative AMPK alpha resulted in a decreased ATP level and significantly compromised survival in hypoxia. Dose-dependent prosurvival effects of rapamycin were consistent with mTOR inhibition being a critical downstream mediator of AMPK in persistent low oxygen.  相似文献   

9.
We previously described the adipokine CTRP1, which has up-regulated expression following exposure to the anti-diabetic drug rosiglitazone and increased circulating levels in adiponectin-null mice (Wong, G. W., Krawczyk, S. A., Kitidis-Mitrokostas, C., Revett, T., Gimeno, R., and Lodish, H. F. (2008) Biochem. J. 416, 161-177). Although recombinant CTRP1 lowers blood glucose in mice, its physiological function, mechanisms of action, and roles in metabolic stress remain unknown. Here, we show that circulating levels of CTRP1 are strikingly reduced in diet-induced obese mice. Overexpressing CTRP1 in transgenic mice improved insulin sensitivity and decreased high-fat diet-induced weight gain. Reduced adiposity resulted from enhanced fatty acid oxidation and energy expenditure, effects mediated by AMP-activated protein kinase (AMPK). In skeletal muscle of transgenic mice, AMPKα and its downstream target, acetyl-CoA carboxylase (ACC), were hyperphosphorylated, indicative of AMPK activation and ACC inhibition. Inactivation of ACC promotes mitochondrial fat oxidation. Consistent with the direct effect of CTRP1 on AMPK signaling, recombinant CTRP1 administration acutely stimulated muscle AMPKα and ACC phosphorylation in vivo. In isolated soleus muscle, recombinant CTRP1 activated AMPK signaling to increase fatty acid oxidation ex vivo, an effect abrogated by an AMPK inhibitor. These results provide the first in vivo evidence that CTRP1 is a novel regulator of fatty acid metabolism.  相似文献   

10.
The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.  相似文献   

11.
The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.  相似文献   

12.
Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule. It stimulates the growth of some cells, but inhibits the growth of others. In this study, we describe the detection of sub-microM to microM concentrations of S1P in the ascitic fluids of patients with ovarian cancer. In ovarian cancer cells cultured in vitro, S1P exhibited a dual effect on growth and/or survival. S1P (10 microM) induced cell death when cells were in suspension but stimulated cell growth when cells were attached. The calcium-dependent induction of cell death by S1P is apparently associated with its inhibitory effect on cell attachment and cell adhesion. S1P (10-30 microM) also induced calcium-dependent cell-cell aggregation.  相似文献   

13.
AMP-activated protein kinase (AMPK), a critical sensor of energy sufficiency, acts as central metabolic switch in cell metabolism. Once activated by low energy status, AMPK phosphorylates key regulatory substrates and turns off anabolic biosynthetic pathways. In contrast, the mammalian/mechanistic target of rapamycin (mTOR) is active when there are sufficient nutrients for anabolic reactions. A critical factor regulating mTOR is phosphatidic acid (PA), a central metabolite of membrane lipid biosynthesis and the product of the phospholipase D (PLD)-catalyzed hydrolysis of phosphatidylcholine. PLD is a downstream target of the GTPase Rheb, which is turned off in response to AMPK via the tuberous sclerosis complex. Although many studies have linked AMPK with mTOR, very little is known about the connection between AMPK and PLD. In this report, we provide evidence for reciprocal regulation of PLD by AMPK and regulation of AMPK by PLD and PA. Suppression of AMPK activity led to an increase in PLD activity, and conversely, activation of AMPK suppressed PLD activity. Suppression of PLD activity resulted in elevated AMPK activity. Exogenously supplied PA abolished the inhibitory effects of elevated AMPK activity on mTOR signaling. In contrast, exogenously supplied PA could not overcome the effect AMPK activation if either mTOR or Raptor was suppressed, indicating that the inhibitory effects of PLD and PA on AMPK activity are mediated by mTOR. These data suggest a reciprocal feedback mechanism involving AMPK and the PLD/mTOR signaling node in cancer cells with therapeutic implications.  相似文献   

14.
The natural polyphenol resveratrol (RSV) displays a wide spectrum of health beneficial activities, yet the precise mechanisms remain to be fully elucidated. Here we show that RSV promotes the multimerization and cellular levels of adiponectin in 3T3-L1 adipocytes. The stimulatory effect of RSV was not affected by knocking out Sirt1, but was diminished by suppressing the expression levels of DsbA-L, a recently identified adiponectin-interactive protein that promotes adiponectin multimerization. Suppression of the Akt signaling pathway resulted in an increase in the expression levels of DsbA-L and adiponectin. On the other hand, knocking out FOXO1 or suppressing the activity or expression levels of the AMP-activated protein kinase (AMPK) down-regulated DsbA-L and adiponectin. The stimulatory effect of RSV on adiponectin and DsbA-L expression was completely diminished in FOXO1-suppressed and AMPK-inactivated 3T3-L1 adipocytes. Taken together, our results demonstrate that RSV promotes adiponectin multimerization in 3T3-L1 adipocytes via a Sirt1-independent mechanism. In addition, we show that the stimulatory effect of RSV is regulated by both the Akt/FOXO1 and the AMPK signaling pathways. Last, we show that DsbA-L plays a critical role in the promoting effect of RSV on adiponectin multimerization and cellular levels.  相似文献   

15.
Lysophosphatidic acid (LPA), which interacts with at least three G protein-coupled receptors (GPCRs), LPA1/Edg-2, LPA2/Edg-4, and LPA3/Edg-7, is a lipid mediator with diverse effects on various cells. Here, we investigated the expression profiles of LPA receptors and patterns of LPA-induced migration in gastric cancer cells. Northern blot analysis revealed that various gastric cancer cells expressed variable levels of LPA1, LPA2, and LPA3 without a consistent pattern. Using a Boyden chamber assay, LPA markedly increased cell migration of LPA1-expressing cells, the effects of which were almost totally abrogated by Ki16425, an LPA antagonist against LPA1 and LPA3. In contrast, LPA by itself did not significantly induce migration in MKN28 and MKN74 cells, which exclusively expressed LPA2. However, when hepatocyte growth factor (HGF) was placed with LPA in the lower chamber, LPA induced migration of these cells in a dose-dependent manner. Immunoprecipitation analysis revealed that LPA induced transient tyrosine phosphorylation of c-Met in LPA2-expressing cells, which suggests that the transactivation of c-Met by LPA causes a cooperative migratory response with HGF to these cells. Our results indicate that LPA regulates the migration of gastric cancer cells in a receptor-specific manner and suggest that the expression pattern of LPA receptors may affect the metastatic behavior of gastric cancer.  相似文献   

16.
17.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism.  相似文献   

18.
Ischemic heart disease is the major cause of death in Western countries. CTRP9 (C1q/TNF-related protein 9) is a fat-derived plasma protein that has salutary effects on glucose metabolism and vascular function. However, the functional role of CTRP9 in ischemic heart disease has not been clarified. Here, we examined the regulation of CTRP9 in response to acute cardiac injury and investigated whether CTRP9 modulates cardiac damage after ischemia and reperfusion. Myocardial ischemia-reperfusion injury resulted in reduced plasma CTRP9 levels and increased plasma free fatty acid levels, which were accompanied by a decrease in CTRP9 expression and an increase in NADPH oxidase component expression in fat tissue. Treatment of cultured adipocytes with palmitic acid or hydrogen peroxide reduced CTRP9 expression. Systemic administration of CTRP9 to wild-type mice, before the induction of ischemia or at the time of reperfusion, led to a reduction in myocardial infarct size following ischemia-reperfusion. Administration of CTRP9 also attenuated myocyte apoptosis in ischemic heart, which was accompanied by increased phosphorylation of AMP-activated protein kinase (AMPK). Treatment of cardiac myocytes with CTRP9 protein reduced apoptosis in response to hypoxia/reoxygenation and stimulated AMPK phosphorylation. Blockade of AMPK activity reversed the suppressive actions of CTRP9 on cardiomyocyte apoptosis. Knockdown of adiponectin receptor 1 diminished CTRP9-induced increases in AMPK phosphorylation and survival of cardiac myocytes. Our data suggest that CTRP9 protects against acute cardiac injury following ischemia-reperfusion via an AMPK-dependent mechanism.  相似文献   

19.
20.
CCR7 binds to its cognate ligand, CCL21, to mediate the migration of circulating naive T lymphocytes to the lymph nodes. T lymphocytes can bind to fibronectin, a constituent of lymph nodes, via their β1 integrins, which is a primary mechanism of T lymphocyte migration; however, the signaling pathways involved are unclear. We report that rapid (within 2 min) and transient phosphorylation of ERK1/2 is required for T cell migration on fibronectin in response to CCL21. Conversely, prevention of ERK1/2 phosphorylation by inhibition of its kinase, MAPK/MEK, prevented T lymphocyte migration. Previous studies have suggested that phospholipase Cγ1 (PLCγ1) can mediate phosphorylation of ERK1/2, which is required for β1 integrin activation. Paradoxically, we found that inhibition of PLCγ1 phosphorylation by the general PLC inhibitor U73122 was associated with a delayed and reduced phosphorylation of ERK1/2 and reduced migration of T lymphocytes on fibronectin. To further characterize the relationship between ERK1/2 and PLCγ1, we reduced PLCγ1 levels by 85% using shRNA and observed a reduced phosphorylation of ERK1/2 and a significant loss of CCR7-mediated migration of T lymphocytes on fibronectin. In addition, we found that inhibition of ERK1/2 phosphorylation by U0126 resulted in a decreased phosphorylation of PLCγ1, suggesting a feedback loop between ERK1/2 and PLCγ1. Overall, these results suggest that the CCR7 signaling pathway leading to T lymphocyte migration on fibronectin is a β1 integrin-dependent pathway involving transient ERK1/2 phosphorylation, which is modulated by PLCγ1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号