首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent cation channel activated by intracellular Ca2+. Expression of this channel is restricted to taste cells, the pancreas and brainstem, and is thought to be involved in controlling membrane potentials. Its endogenous ligands are not well characterized. Here, we show that extracellular application of Zn2+ inhibits TRPM5 activity. In whole-cell patch-clamp recordings, extracellular application of ZnCl2 inhibited step-pulse-induced TRPM5 currents with 500 nm free intracellular Ca2+ in a dose-dependent manner (IC50 = 4.3 μm at −80 mV). ZnSO4 also inhibited TRPM5 activity. Extracellular application of ZnCl2 inhibited TRPM5 activation at several temperatures. Furthermore, inhibition by 30 μm ZnCl2 was impaired in TRPM5 mutants in which His at 896, and Glu at 926 and/or Glu at 939 in the outer pore loop were replaced with Gln. From these results, we conclude that extracellular Zn2+ inhibits TRPM5 channels, and the residues in the outer pore loop of TRPM5 are critically involved in the inhibition.  相似文献   

2.
TRPM7, a divalent cation channel, plays an important role in neurons damaged from cerebral ischemia due to permitting intracellular calcium overload. This study aimed to explore whether magnesium was transported via a TRPM7 channel into the intracellular space of rat hippocampal neurons after 1 h of oxygen-glucose deprivation (OGD) and acute chemical ischemia (CI) by using methods of the Mg(2+) fluorescent probe Mag-Fura-2 to detect intracellular magnesium concentration ([Mg(2+)](i)) and flame atomic absorption spectrometry to measure extracellular magnesium concentration ([Mg(2+)](o)). The results showed that the neuronal [Mg(2+)](i) was 1.51-fold higher after 1 h of OGD at a basal level, and the increase of neuronal [Mg(2+)](i) reached a peak after 1 h of OGD and was kept for 60 min with re-oxygenation. Meanwhile, the [Mg(2+)](o) decreased after 1 h of OGD and recovered to the pre-ischemic level within 15 min after re-oxygenation. In the case of CI, the [Mg(2+)](i) peak immediately appeared in hippocampal neurons. This increase of [Mg(2+)](i) declined by removing extracellular magnesium in OGD or CI. Furthermore, by using Gd(3+) or 2-aminoethoxydiphenyl borate to inhibit TRPM7 channels, the [Mg(2+)](i) increase, which was induced by OGD or CI, was attenuated without altering the basal level of [Mg(2+)](i). By silencing TRPM7 with shRNA in hippocampal neurons, it was found that not only was the increase of [Mg(2+)](i) induced by OGD or CI but also the basal levels of [Mg(2+)](i) were attenuated. In contrast, overexpression of TRPM7 in HEK293 cells exaggerated both the basal levels and increased [Mg(2+)](i) after 1 h of OGD/CI. These results suggest that anoxia induced the increase of [Mg(2+)](i) via TRPM7 channels in rat hippocampal neurons.  相似文献   

3.
TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs.  相似文献   

4.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.  相似文献   

5.
TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic β cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.  相似文献   

6.
The transient receptor potential channels TRPML2 and TRPML3 (MCOLN2 and MCOLN3) are nonselective cation channels. They are widely expressed in mammals. However, little is known about their physiological function(s) and activation mechanism(s). TRPML3 can be activated or rather de-inhibited by exposing it first to sodium-free extracellular solution and subsequently to high extracellular sodium. TRPML3 can also be activated by a variety of small chemical compounds identified in a high throughput screen and is inhibited by low pH. Furthermore, it was found that TRPML3 is constitutively active in low or no sodium-containing extracellular solution. This constitutive activity is independent of the intracellular presence of sodium, and whole-cell current densities are similar with pipette solutions containing cesium, potassium, or sodium. Here, we present mutagenesis data generated based on the hypothesis that negatively charged amino acids in the extracellular loops of TRPML3 may interfere with the observed sodium inhibition. We systematically mutated negatively charged amino acids in the first and second extracellular loops and found that mutating Glu-361 in the second loop has a significant impact on the sodium-mediated block of TRPML3. We further demonstrate that the TRPML3-related cation channel TRPML2 is also activated by lowering the extracellular sodium concentration as well as by a subset of small chemical compounds that were previously identified as activators of TRPML3, thus confirming the functional activity of TRPML2 at the plasma membrane and suggesting similar gating mechanisms for both TRPML channels.  相似文献   

7.
Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-d-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity.  相似文献   

8.
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.  相似文献   

9.
TRPV1 is a member of the transient receptor potential ion channel family and is gated by capsaicin, the pungent component of chili pepper. It is expressed predominantly in small diameter peripheral nerve fibers and is activated by noxious temperatures >42 °C. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A/4F-derived metabolite of the membrane phospholipid arachidonic acid. It is a powerful vasoconstrictor and has structural similarities with other TRPV1 agonists, e.g. the hydroperoxyeicosatetraenoic acid 12-HPETE, and we hypothesized that it may be an endogenous ligand for TRPV1 in sensory neurons innervating the vasculature. Here, we demonstrate that 20-HETE both activates and sensitizes mouse and human TRPV1, in a kinase-dependent manner, involving the residue Ser(502) in heterologously expressed hTRPV1, at physiologically relevant concentrations.  相似文献   

10.
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).  相似文献   

11.
Cav1.2 Ca(2+) channel activity diminishes in inside-out patches (run-down). Previously, we have found that with ATP, calpastatin domain L (CSL) and calmodulin (CaM) recover channel activity from the run-down in guinea pig cardiac myocytes. Because the potency of the CSL repriming effect was smaller than that of CaM, we hypothesized that CSL might act as a partial agonist of CaM in the channel-repriming effect. To examine this hypothesis, we investigated the effect of the competitions between CSL and CaM on channel activity and on binding in the channel. We found that CSL suppressed the channel-activating effect of CaM in a reversible and concentration-dependent manner. The channel-inactivating effect of CaM seen at high concentrations of CaM, however, did not seem to be affected by CSL. In the GST pull-down assay, CSL suppressed binding of CaM to GST fusion peptides derived from C-terminal regions in a competitive manner. The inhibition of CaM binding by CSL was observed with the IQ peptide but not the PreIQ peptide, which is the CaM-binding domain in the C terminus. The results are consistent with the hypothesis that CSL competes with CaM as a partial agonist for the site in the IQ domain in the C-terminal region of the Cav1.2 channel, which may be involved in activation of the channel.  相似文献   

12.
Ca(2+) influx by store-operated Ca(2+) channels is a key component of the receptor-evoked Ca(2+) signal. In all cells examined, transient receptor potential canonical (TRPC) channels mediate a significant portion of the receptor-stimulated Ca(2+) influx. Recent studies have revealed how STIM1 activates TRPC1 in response to store depletion; however, the role of STIM1 in TRPC channel activation by receptor stimulation is not fully understood. Here, we established mutants of TRPC channels that could not be activated by STIM1 but were activated by the "charge-swap" mutant STIM1(K684E,K685E). Significantly, WT but not mutant TRPC channels were inhibited by scavenging STIM1 with Orai1(R91W), indicating the STIM1 dependence and independence of WT and mutant TRPC channels, respectively. Importantly, mutant TRPC channels were robustly activated by receptor stimulation. Moreover, STIM1 and STIM1(K684E,K685E) reciprocally affected receptor-activated WT and mutant TRPC channels. Together, these findings indicate that TRPC channels can function as STIM1-dependent and STIM1-independent channels, which increases the versatility of TRPC channel function and their role in receptor-stimulated Ca(2+) influx.  相似文献   

13.
Two-pore channels (TPCs) localize to the endolysosomal system and have recently emerged as targets for the Ca(2+)-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, their membrane topology is unknown. Using fluorescence protease protection assays, we show that human TPC1 and TPC2 possess cytosolic N and C termini and therefore an even number of transmembrane regions. Fluorophores placed at position 225 or 347 in TPC1, or 339 in TPC2 were also cytosolic, whereas a fluorophore at position 628 in TPC1 was luminal. These data together with sequence similarity to voltage-gated Ca(2+) and Na(+) channels, and unbiased in silico predictions are consistent with a topology in which two homologous domains are present, each comprising 6 transmembrane regions and a re-entrant pore loop. Immunocytochemical analysis of selectively permeabilized cells using antipeptide antibodies confirmed that the C-terminal tails of recombinant TPCs are cytosolic and that residues 240-254 of TPC2 prior to putative pore 1 are luminal. Both TPC1 and TPC2 are N-glycosylated with residues 599, 611, and 616 contributing to glycosylation of TPC1. This confirms the luminal position of these residues, which immediately precede the putative pore loop of the second domain. Mutation of all three glycosylation sites in TPC1 enhances NAADP-evoked cytosolic Ca(2+) signals. Our data establish essential features of the topology of two-pore channels.  相似文献   

14.
In endothelial cells Ca(2+) entry is an essential component of the Ca(2+) signal that takes place during processes such as cell proliferation or angiogenesis. Ca(2+) influx occurs via the store-operated Ca(2+) entry pathway, involving stromal interaction molecule-1 (STIM1) and Orai1, but also through channels gated by second messengers like the transient receptor potential canonical (TRPC) channels. The human umbilical vein-derived endothelial cell line EA.hy926 expressed STIM1 and Orai1 as well as several TRPC channels. By invalidating each of these molecules, we showed that TRPC3, TRPC4, and TRPC5 are essential for the formation of tubular structures observed after EA.hy926 cells were plated on Matrigel. On the contrary, the silencing of STIM1 or Orai1 did not prevent tubulogenesis. Soon after being plated on Matrigel, the cells displayed spontaneous Ca(2+) oscillations that were strongly reduced by treatment with siRNA against TRPC3, TRPC4, or TRPC5, but not siRNA against STIM1 or Orai1. Furthermore, we showed that cell proliferation was reduced upon siRNA treatment against TRPC3, TRPC5, and Orai1 channels, whereas the knockdown of STIM1 had no effect. On primary human umbilical vein endothelial cells, TRPC1, TRPC4, and STIM1 are involved in tube formation, whereas Orai1 has no effect. These data showed that TRPC channels are essential for in vitro tubulogenesis, both on endothelial cell line and on primary endothelial cells.  相似文献   

15.
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+).  相似文献   

16.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

17.
One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8β. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.  相似文献   

18.
Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca2+ elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.  相似文献   

19.
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.  相似文献   

20.
Whether animal ion channels functioning as mechanosensors are directly activated by stretch force or indirectly by ligands produced by the stretch is a crucial question. TRPV4, a key molecular model, can be activated by hypotonicity, but the mechanism of activation is unclear. One model has this channel being activated by a downstream product of phospholipase A2, relegating mechanosensitivity to the enzymes or their regulators. We expressed rat TRPV4 in Xenopus oocytes and repeatedly examined >200 excised patches bathed in a simple buffer. We found that TRPV4 can be activated by tens of mm Hg pipette suctions with open probability rising with suction even in the presence of relevant enzyme inhibitors. Mechanosensitivity of TRPV4 provides the simplest explanation of its various force-related physiological roles, one of which is in the sensing of weight load during bone development. Gain-of-function mutants cause heritable skeletal dysplasias in human. We therefore examined the brachyolmia-causing R616Q gain-of-function channel and found increased whole-cell current densities compared with wild-type channels. Single-channel analysis revealed that R616Q channels maintain mechanosensitivity but have greater constitutive activity and no change in unitary conductance or rectification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号