首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using a classical population genetic model, the necessary conditions for the spread of genes that determine social behaviors and the rate of spread of these genes are derived. The influence of 1, 2, 3, or k inseminations per female on these conditions is investigated for both diploid and haplodiploid organisms. These results are then extended to a population in which there are arbitrary variations among females in their numbers of mates. These results do not depend upon assuming equal paternity by all inseminating males; the effects of sperm competition and unequal paternity are also derived. The rates and conditions for social evolution in these groups of complex composition are discussed in relation to Hamilton's rule.For all models, the total change in gene frequency, Δq, is partitioned into two components: (1) ΔqI, the change in gene frequency caused by selection within groups; this component is always negative, illustrating that individual selection always operates against the evolution of social behaviors; and (2) ΔqG, the change in gene frequency caused by selection between groups; this component is generally positive. Hamilton's rule is shown to specify the necessary and sufficient conditions for ΔqG > |ΔqI|, that is, for selection among kin groups to over-ride individual selection within kin groups.  相似文献   

3.
Human females stop reproducing long before they die. Among other mammals, only pilot and killer whales exhibit a comparable period of post-reproductive life. The grandmother hypothesis suggests that kin selection can favour post-reproductive survival when older females help their relatives to reproduce. But although there is an evidence that grandmothers can provide such assistance, it is puzzling why menopause should have evolved only among the great apes and toothed whales. We have previously suggested (Cant & Johnstone 2008 Proc. Natl Acad. Sci. USA 105, 5332–5336 (doi:10.1073/pnas.0711911105)) that relatedness asymmetries owing to female-biased dispersal in ancestral humans would have favoured younger females in reproductive competition with older females, predisposing our species to the evolution of menopause. But this argument appears inapplicable to menopausal cetaceans, which exhibit philopatry of both sexes combined with extra-group mating. Here, we derive general formulae for ‘kinship dynamics’, the age-related changes in local relatedness that occur in long-lived social organisms as a consequence of dispersal and mortality. We show that the very different social structures of great apes and menopausal whales both give rise to an increase in local relatedness with female age, favouring late-life helping. Our analysis can therefore help to explain why, of all long-lived, social mammals, it is specifically among the great apes and toothed whales that menopause and post-reproductive helping have evolved.  相似文献   

4.
We provide heuristic arguments and a simple, self-contained proof of May's (1972) stability theorem for randomly assembled linear systems. See also Gardner & Ashby's (1970) simulation results. Our argument is easily modified to handle typical ecological constraints (May, 1974; Lawlor, 1978) on community interaction matrices. In complex systems, our argument suggests that weak interactions with many species (high C, low α) are favored over strong interactions with few species (low C, high α). This partially resolves the “rocky intertidal paradox” (May, 1979; Murdock, 1979) by explaining overall structure in this intensely competitive community.  相似文献   

5.
The evolutionarily stable strategy of mutual help between relatives having unequal fertilities is studied in a kin selection model, which also takes into account competition between kins and the possibility of reciprocation. It turns out that competition and reciprocation can establish ESSs which are completely different from those expected by Hamilton's basic theory.  相似文献   

6.
The ability to recognize related cells in a population can confer evolutionary benefits. For example, some bacteria use contact-dependent inhibition proteins to distinguish kin from nonkin. Kinship recognition is taken to a new level in Myxococcus, which uses the dual-purpose TraA protein for kin recognition and outer membrane and lipoprotein exchange. In this issue of the Journal of Bacteriology, Wei et al. (X. Wei, C. N. Vassallo, D. T. Pathak, D. Wall, J. Bacteriol. 196:1807–1814, 2014) show that Tra-dependent exchange can be uncoupled from outer membrane vesicle/tube formation, reported elsewhere to mediate outer membrane exchange.  相似文献   

7.
Prosociality is fundamental to social relationships, but providing it indiscriminately risks exploitation by egoists. Past work demonstrates that individuals avoid these risks through a more selective form of prosociality, cooperating less and sharing fewer resources with egoists (e.g. Axelrod & Hamilton, 1981). The evolution of cooperation. Science, 211(4489), 1390–1396). We extend this work to explore whether individuals experience reduced prosocial affective and physiological responses to egoists in situations where they are suffering. In two studies, participants learned of a target’s egoistic or non-egoistic traits, and then encountered the target suffering. Suffering egoists evoked less compassion in others than non-egoists and elicited physiological responses that diverged from patterns associated with compassion and social engagement (reduced heart rate and greater respiratory sinus arrhythmia activity). Participants' feelings of distrust toward egoists explained these attenuated emotional and physiological responses. These results build upon studies of prosocial behavior by suggesting that individuals experience reduced prosocial emotional and physiological responses toward suffering egoists.  相似文献   

8.
Kinship theory implies that individual social Hymenoptera should be able to identify kin. We tested kin discrimination in the polygynous ponerine ant Gnamptogenys striatula. Mate choice experiments showed that individuals did not pair according to kinship. Experiments on matriline discrimination revealed that workers did not preferentially groom, transport (after nest disturbance) or cannibalize (after starvation) larvae on the basis of kin, when both related and unrelated larvae were present. These results show the absence of kin discrimination for the criteria and experimental conditions used. The lack of kin discrimination during mate choice in G. striatula can be explained by male dispersion and female philopatry, which reduces the likelihood of mating between siblings and of kin-based mate choice reflected in incest avoidance. The lack of matriline discrimination by workers may reflect permanent intracolony mutualism or the high cost of discrimination. Finally, it appears that the absence of kin discrimination in such contexts in G. striatula is not incompatible with kinship theory and may have been secondarily selected during social evolution. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

9.
The equation for the fitness requirements for the evolution of altruism by diploid workers in haplodiploid species was derived from the model. of Scudo & Ghiselin (1975). When the benefit to a family is proportional to the number of altruists, the constraints on fitness were found to be the same as for haploid altruists in haplodiploid species and for workers of ether sex in diploid species, in contrast to the equation given by Scudo & Ghiselin (1975). With this correction, their results are now in agreement both with comparable allele frequency models and with kin selection games theory. The general condition for evolution of altruism under this model, when benefits are not necessarily proportional to the number of altruists, was also derived. The result appears to differ from games theory predictions, but this is solely because the basic assumptions are not comparable. Altruism is less likely to arise under these conditions, which are less favorable for altruism at gene frequencies above 0·33.  相似文献   

10.
It is often (implicitly) assumed that the expectation of reciprocation motivates animal altruism, and thus that animals “plan” their social interactions. We tested this hypothesis by studying a captive group of mandrills (Mandrillus sphinx). In our focal group, the alpha male was more likely to provide agonistic support in the minutes after the receipt of grooming than in the absence of previous grooming. This offered other group members the possibility of manipulating the male’s support by grooming him before engaging in an aggression. We used survival analysis to test the hypothesis that the other group members systematically groomed the alpha male just before engaging in aggression, which would suggest that the expectation of reciprocation motivated their grooming. Contrary to the prediction of our hypothesis, we found that other group members did not groom the alpha male just before engaging in aggression, and thus did not benefit from increased support from the most effective ally. These results suggest that mandrills do not plan their social interactions and that the expectation of reciprocation does not motivate them to groom.  相似文献   

11.
Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/.  相似文献   

12.
The persistence of altruism and spite remains an enduring problem of social evolution. It is well known that selection for these actions depends on the structure of the population—that is, on actors'' genetic relationships to recipients and to the ‘neighbourhood’ upon which the effects of their actions redound. Less appreciated, however, is that population structure can cause genetic asymmetries between partners whereby the relatedness (defined relative to the neighbourhood) of an individual i to a partner j will differ from the relatedness of j to i. Here, we introduce a widespread mechanism of kin recognition to a model of dispersal in subdivided populations. In so doing, we uncover three remarkable consequences of asymmetrical relatedness. First, altruism directed at phenotypically similar partners evolves more easily among migrant than native actors. Second, spite directed at dissimilar partners evolves more easily among native than migrant actors. Third, unlike migrants, natives can evolve to pay costs that far outstrip those they spitefully impose on others. We find that the frequency of natives relative to migrants amplifies the asymmetries between them. Taken together, our results reveal differentiated patterns of ‘phenocentrism’ that readily arise from asymmetries of relatedness.  相似文献   

13.
Grooming is one of the most conspicuous social interactions among nonhuman primates. The selection of grooming partners can provide important clues about factors relevant for the distribution of grooming within a social group. We analyzed grooming behavior among 17 semi-free ranging female Barbary macaques (Macaca sylvanus). We tested whether grooming is related to kinship, rank and friendship. Furthermore, we tested whether grooming is reciprocated or exchanged for rank related benefits (i.e. lower aggression and increased tolerance whilst feeding). We found that in general grooming was reciprocally exchanged, directed up the hierarchy and at the same time affected by friendship and kinship. Grooming was more frequent among individuals with higher friendship values as well as amongst related individuals. We also divided our data set on the basis of rank difference and tested if different power asymmetries between individuals affected the tendency to exchange grooming for rank related benefits and grooming reciprocation. In support of our initial hypothesis our results show that the reciprocation of grooming was a significant predictor of grooming interactions between individuals of similar rank, but not between those individuals more distantly separated in the social hierarchy. However, we did not find any evidence for grooming being exchanged for rank related benefits in either data set. Our results, together with previously published studies, illustrate the behavioral flexibility of macaques. It is clear that multiple studies of the same species are necessary to gather the data required for the solid comparative studies needed to shed light on patterns of grooming behavior in primates.  相似文献   

14.
A recent commentary raised concerns about aspects of the model and assumptions used in a previous study which demonstrated that selection can favor chromosomal alleles that confer higher plasmid donation rates. Here, the authors of that previous study respond to the concerns raised.

In our original work [1], we demonstrated experimentally that selection can favor chromosomal alleles that confer higher plasmid donation rates, given the plasmid is beneficial and the recipient has an elevated chance of carrying the donor allele (i.e., preferential donation to kin). Our experiments demonstrated this effect via 2 mechanisms of preferential donation: biased conjugation rates and structured populations. We interpreted these results through the lens of kin selection theory (benefits via horizontal gene transfer to kin), supported by simulations and an analytical fitness function model. These results hold importance by outlining that the evolution of plasmid transfer rates (a key aspect of the antibiotic resistance crisis) is not necessarily the sole product of selection on the plasmid itself and forms part of a broader series of papers from our labs investigating the sociomicrobiology of plasmids [24].A new commentary raises concerns over our fitness function model, flagging issues with both the structure of the model and assumptions made in our analysis [5]. We stand by the general conclusions of our work but accept that our fitness function and stated analysis assumptions could be better formulated. Our initial fitness function is heuristic in the sense it was designed to capture general processes acting on the fitness of individuals, dependent on the plasmid and donor allele status—without explicitly modeling the myriad demographic events of dispersal, reproduction, conjugation, and death that result in selective shifts across a metapopulation of cells. Specifically, we captured the “force of infection” faced by an uninfected cell as the product of average plasmid prevalence and average donor allele prevalence in the local patch (pjqj; see commentary for notation details). We agree with the authors that this force of infection is better phrased as the average of the product ((1/N)∑pij qij), in part because this avoids the potential pathology under limit conditions described by the authors, but also because this approach better highlights that the particular social trait in question is an “other only” cooperative trait [6], illustrated by commentary equation [2], where transmission to self and transmission to others are separated. This separation has the important consequence of highlighting that unlike many microbial social traits where benefits accrue to a group (including self), a cooperative plasmid donor trait can only benefit other cells that lack the plasmid. Given established costs of donation (e.g., see figure S2 in our original article), this defines our “donor” behavior as an altruistic trait, which can, therefore, only be favored by selection given nonrandom interactions among individuals (e.g., [7]).Our experimental results outline 2 mechanisms of nonrandom interactions: preferential donation to kin and population structure. Each of these mechanisms will generate positive covariances between focal individual qij and non-self-recipient qj donor allele states (cov(qj, qij) > 0). The pathway via preferential donation to kin (order-of-magnitude differences according to our analyses and more recent measurements among lineages coexisting within natural populations [8]) will also likely generate positive covariances between donor and recipient abilities (cov(sij, qij) > 0). In contrast, to arrive at the result that selection always works against plasmid donor alleles (equation [4]), the commentary makes the assumption that both of the above covariances are zero. We suggest that the additional analyses begun by the authors are an exciting starting point to better map selection on donor alleles, under a broader array of defined assumptions on cell–cell and gene–gene structure, ideally informed by data on structures found in natural bacterial populations.  相似文献   

15.
Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip.  相似文献   

16.
It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that are more or less permissive of altruism. As an example, I give closed‐form results for Hamilton's rule in a three‐stage life cycle. Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results. Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these two phenomena. Population viscosity per se does not impede kin selection.  相似文献   

17.
Social networks of infant rhesus monkeys (Macaca mulatta) in a free-ranging, lineage-based group on Cayo Santiago are described by assessing the extent to which four measures of positive interaction between infants and finely-divided categories of companions are associated with (1) degree of relatedness through maternal lines; (2) sex of the companion; (3) age of the companion; and (4) dominance rank of the infant's lineage. The results suggest that the infant's social network mirrors that of its mother both in the first weeks of life and as late as 30 weeks of age. Infants have more positive social interaction with close kin than with distant kin or with unrelated individuals, and thus function as members of their lineage from the beginning. They associate more with female companions than with male companions, and more with younger immatures than with older immatures. Finally, infants in the top-ranking lineage spend more time with their own relatives than do infants in other lineages. The fact that these patterns change little as the infant gains independence from the mother supports suggestions that early maternal influence serves to pass on aspects of the mother's social network. It is suggested that the ontogeny of early social relationships resembles a process of differentiation.  相似文献   

18.
In a recent article E.O. Wilson and B. H?lldobler (2005) describe an heuristic model for the evolution of eusociality. They present their model as an alternative to the standard model of kin selection, and describe the evolution of eusociality in terms of changes in frequency to an hypothetical eusocial allele. Here I build on sentiments of Foster et al. (2006) to suggest that the proposed model is not a clear alternative to the standard model, but appears to represent a special case of kin selection involving preferential interactions among individuals sharing the same altruistic gene. The model proposed by Wilson and H?lldobler is consistent with the ‘greenbeard’ model of kin selection, first proposed by W.D. Hamilton. Received 23 May 2006; revised 27 June 2006; accepted 5 July 2006.  相似文献   

19.
Paleontologists' traditional conceptions on evolution do not seem to be in perfect accord with these of biologists. The gradual phyletism is compatible neither with E. Mayr's model of the Founder, nor with the actual stability of most of the paleontological species. The punctuated equilibrium model proposed by N. Eldredge & S.J. Gould offers a solution which integrates both paleontological observations and the data of modern biology.  相似文献   

20.
Cooperation violates the view of “nature red in tooth and claw” that prevails in our understanding of evolution, yet examples of cooperation abound. Most work has focused on maintenance of cooperation within a single species through mechanisms such as kin selection. The factors necessary for the evolutionary origin of aiding unrelated individuals such as members of another species have not been experimentally tested. Here, I demonstrate that cooperation between species can be evolved in the laboratory if (1) there is preexisting reciprocation or feedback for cooperation, and (2) reciprocation is preferentially received by cooperative genotypes. I used a two species system involving Salmonella enterica ser. Typhimurium and an Escherichia coli mutant unable to synthesize an essential amino acid. In lactose media Salmonella consumes metabolic waste from E. coli, thus creating a mechanism of reciprocation for cooperation. Growth in a spatially structured environment assured that the benefits of cooperation were preferentially received by cooperative genotypes. Salmonella evolved to aid E. coli by excreting a costly amino acid, however this novel cooperation disappeared if the waste consumption or spatial structure were removed. This study builds on previous work to demonstrate an experimental origin of interspecific cooperation, and to test the factors necessary for such interactions to arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号